Developing Engineering Mindset in Youth

Christine M. Cunningham Youth Engineering Solutions Museum of Science, Boston

Today

Introduce engineering practices and mindset

Engage in YES Rescue Shuttle challenge Variable testing
Engineer a shuttle

Reflect on engineering practices

Engineering practices – patterned behaviors that create knowledge and products

Engagement in practices \rightarrow engineering mindset

Engineering practices

10 Practices for an Engineering Mindset

Reference

Cunningham, C.M (2018). Engineering in elementary STEM education: Curriculum design, instruction, learning and assessment. New York, NY: Teacher College Press Cunningham, C. M., & Kelly, G. K. (2017). Epistemic practices of engineering in education. Science Education. 101, 486-505

MILLION GIRLS MOONSHOT

How do shuttle features affect flight distance?

Launch process

- Make sure launcher is set to 30 degrees
- Place shuttle on launcher
- Make sure rescue area is clear
- Yell "Ready" and jump on the balloon

Shuttle Flight Distance	時 A1
What changes to the shuttle body result in a shorter flight distance? What changes to the shuttle body result in a long	to the shuttle body er flight distance?

Today's challenge

Criterion	Constraints
Our rescue shuttle must	We can only
land in the target zone in three attempts or fewer.	use provided materials

Target Rescue Zone Range (circle one)

Short	Medium	Long
25 ft.–30 ft.	30 ft.–35 ft.	→ 35 ft.–40 ft.

Making the Shuttle Body

Roll the materials around the tube. Tape it closed. Slide it off the tube. Tape the top closed.

Create	Plan Our Rescue Shuttle	Plan Create	Test		Ð
	We could use to I like that idea because What if we tried because ?		lest	Launch your rescue shuttle to test if it lan	nds in your each attempt.
	Draw and label your group's design below.		Rescue Attempt	Flight Distance Mark where your shuttle landed	Score Circle your score:
	Length:		1	launch short medium long≯ site range range range	5 0 (landed (missed) in target zone)
	Material: Fins:		2	launch short medium long≽ site range range range	5 0
	Weights:		3	launch short medium long	5 0
	Which materials will we use? How many do we need?			Total Score:	

Improve

Which parts of your rescue rope shuttle design worked well?

What is something you would like to improve about your rescue rope shuttle?

YES

Engineering practices

10 Practices for an Engineering Mindset

Reference

Cunningham, C.M (2018). Engineering in elementary STEM education: Curriculum design, instruction, learning and assessment. New York, NY: Teacher College Press Cunningham, C. M., & Kelly, G. K. (2017). Epistemic practices of engineering in education. Science Education. 101, 486-505

MILLION GIRLS MOONSHOT

Questions?

YouthEngineeringSolutions.org yes@mos.org ccunningham@mos.org

YES Elementary https://forms.gle/Pzrho8Gd8EC9aNEa6

https://forms.gle/crWU8KKKGD6ZXiF37

YES Out-of School

This material is based upon work supported by the National Science Foundation (NSF) Broadening Participation in Research (BPE) Grant #205434 and STEMNext's Million Girls Moonshoot initiative.

