Spring 2016 Nebraska State Accountability (NeSA) Reading, Mathematics and Science Alternate Assessment # Technical Report Appendices October 2016 Prepared by Data Recognition Corporation # Appendix A: NeSA-AAR Test Blueprint | Nebraska State Accountability - Alternate Assessment of Reading (NeSA-AAR) Table of Specifications | | | | | | | | | | |--|-----------------------------|---------|---------|---------|---------|---------------|--|--|--| | Grade 3 | | | | | | | | | | | Gr3 Vocabulary | Highest DOK
Stage Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Total | | | | | LA 3.1.5 Vocabulary: Students will build literary, general academic, and content specific grade level vocabulary. | | | | | | | | | | | LA 3.1.5.a General Apply word structure elements, known words, and word patterns to determine meanings Extended Identify plural words and illustrations that show more than one | 4 | 0-1 | 1-2 | 1-2 | 1-2 | 3-7 | | | | | LA 3.1.5.c General Apply context clues and text features to help infer meaning of unknown words Extended Use context clues and text features to determine meaning of unknown words | 4 | 0 | 1-2 | 1-2 | 1-2 | 3-6 | | | | | LA 3.1.5.d General Identify semantic relationships Extended Categorize words or illustrations | 3 | 0 | 0-1 | 0-2 | 0 | 0-3 | | | | | Gr3 Comprehension | Highest DOK
Stage Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Total | | | | | LA 3.1.6 Students will extract and construct meaning using prior knowledge, applying text information, and monitoring comprehension while reading grade level text. | | | | | | | | | | | LA 3.1.6.a General Identify author's purpose(s) to support text comprehension Extended Recognize that authors communicate their thoughts through writing | 4 | 0 | 0-1 | 1-2 | 0-1 | 1-4 | | | | | LA 3.1.6.b General Identify elements of narrative text Extended Identify elements of narrative text | 4 | 0 | 0-1 | 1-2 | 0-1 | 1-4 | | | | | LA 3.1.6.c General Retell and summarize narrative text including characters, setting, and plot with supporting details Extended Recall basic facts from narrative text | 4 | 0 | 0-1 | 1-2 | 0-1 | 1-4 | | | | | LA 3.1.6.d General Identify literary devices and explain the ways in which language is used Extended Identify the literary device, onomatopoeia | 4 | 0 | 0-1 | 1-2 | 0-1 | 1-4 | | | | | LA 3.1.6.e General Retell and summarize the main idea from informational text using supporting details Extended Identify the main idea from an informational text | 4 | 0 | 0-1 | 1-2 | 0-1 | 1-4 | |--|---|-----|-----|-----|-----|-----| | LA 3.1.6.f General Recognize and apply knowledge of organizational patterns found in informational text Extended Identify the first event in a three-step organizational pattern in informational text using illustrations | 4 | 0 | 0-1 | 1-2 | 0-1 | 1-4 | | LA 3.1.6.g General Apply knowledge of text features to locate information and gain meaning from a text Extended Apply knowledge of text features to gain meaning | 4 | 0-1 | 0-1 | 1-2 | 0-1 | 1-5 | | LA 3.1.6.h General Describe the defining characteristics of narrative and informational genres Extended Recognize informational (nonfiction) genres | 4 | 0 | 0-1 | 0-1 | 0-1 | 1-4 | | LA 3.1.6.j General Generate and/or answer literal, inferential, and critical questions, supporting answers using prior knowledge and literal and inferential information from the text Extended Answer literal questions using information from the text | 4 | 0 | 0-1 | 0-1 | 0-1 | 1-4 | | Nebraska State Accountability - Alternate Assessment of Reading (NeSA-AAR) Table of Specifications | | | | | | | | | |--|--------------------------------|---------|---------|---------|---------|---------------|--|--| | Grade 4 | | | | | | | | | | Gr4 Vocabulary | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | item
Total | | | | LA 4.1.5 Vocabulary: Students will build literary, general academic, and content specific grade level vocabulary. | | | | | | | | | | LA 4.1.5.a General Apply knowledge of word structure elements, known words, and word patterns to determine meanings Extended Identify singular and plural illustrations and words representing nouns | 4 | 0-1 | 1-2 | 1-2 | 1-2 | 3-7 | | | | LA 4.1.5.c <u>General Apply context clues and text features to infer meaning of unknown words Extended Use context clues and text features to determine meaning of unknown words</u> | 4 | 0 | 1-2 | 1-2 | 1-2 | 3-6 | | | | LA 4.1.5.d General Identify semantic relationships Extended Identify word patterns/families | 3 | 0 | 0-1 | 0-2 | 0 | 0-3 | | | | Gr4 Comprehension | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Total | | | | LA 4.1.6 Students will extract and construct meaning using prior knowledge, applying text information, and monitoring comprehension while reading grade level text. | | | | | | | | | | LA 4.1.6.a General Identify author's purpose(s) and recognize how author perspective influences text Extended Identify author's purpose through the feelings of the reader | 4 | 0 | 0-1 | 1-2 | 0-1 | 1-4 | | | | LA 4.1.6.b General Identify and analyze elements of narrative text Extended Identify elements of narrative text | 4 | 0 | 0-1 | 1-2 | 0-1 | 1-4 | | | | LA 4.1.6.c General Summarize narrative text including characters, setting, and plot with supporting details Extended Recall basic facts from narrative text | 4 | 0 | 0-1 | 1-2 | 0-1 | 1-4 | | | | LA 4.1.6.d General Identify literary devices and explain the ways in which language is used Extended Identify the literary device of imagery by matching descriptions to illustrations | 4 | 0 | 0-1 | 1-2 | 0-1 | 1-4 | | | | LA 4.1.6.e General Retell and summarize the main idea from informational text using supporting details Extended Identify the main idea from an informational text | 4 | 0 | 0-1 | 1-2 | 0-1 | 1-4 | | | | LA 4.1.6.f General Recognize and apply knowledge of organizational patterns found in informational text Extended Identify the first and last event in a three-step organizational pattern in informational text using illustrations | 4 | 0 | 0-1 | 1-2 | 0-1 | 1-4 | |--|---|-----|-----|-----|-----|-----| | LA 4.1.6.g General Apply knowledge of text features to locate information and gain meaning from a text Extended Apply knowledge of text features to locate information on simple maps | 4 | 0-1 | 0-1 | 1-2 | 0-1 | 1-5 | | LA 4.1.6.h General Describe the defining characteristics of narrative and informational genres Extended Recognize narrative (fiction) genres | 4 | 0 | 0-1 | 0-1 | 0-1 | 0-3 | | LA 4.1.6.j General Generate and/or answer literal, inferential, and critical questions, supporting answers using prior knowledge and literal and inferential information from the text Extended Answer literal questions using information from the text | 4 | 0 | 1-2 | 1-2 | 0-1 | 2-5 | | Nebraska State Accountability - Alternate Assessment of Reading (NeSA-AAR) Table of Specifications | | | | | | | | | | |---|--------------------------------|---------|---------|---------|---------|---------------|--|--|--| | Grade 5 | | | | | | | | | | | Gr5 Vocabulary | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Total | | | | | LA 5.1.5 Vocabulary: Students will build literary, general academic, and content specific grade level vocabulary. | | | | | | | | | | | LA 5.1.5.a General Apply knowledge of word structure elements, known words, and word patterns to determine meanings Extended Identify the illustration or word representing parts of speech and word structure | 4 | 0-1 | 1-2 | 1-2 | 1-2 | 3-7 | | | | | LA 5.1.5.c General Select and apply context clues and text features to determine meaning of unknown words in a variety of text structures Extended Use context clues and text features to determine meaning of unknown words in a variety of text structures | 4 | 0 | 1-2 | 1-2 | 1-2 | 3-6 | | | | | LA 5.1.5.d <u>General</u> Identify semantic relationships <u>Extended</u> Identify synonyms and antonyms using illustrations or words | 3 | 0 | 0-1 | 0-2 | 0 | 0-3 | | | | | Gr5 Comprehension | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Total | | | | | LA 5.1.6 Students will extract and construct meaning using prior knowledge, applying text information, and monitoring comprehension while reading grade level text. | | | | | | | | | | | LA 5.1.6.a General Identify author's purpose(s) and recognize how author perspective influences text Extended Determine if the author's purpose is to entertain | 4 | 0 | 0-1 | 1-2 | 0-1 | 1-4 | | | | | LA 5.1.6.b General Identify and analyze elements of narrative text Extended Identify elements of narrative text | 4 | 0 | 0-1 | 1-2 | 0-1 | 1-4 | | | | | LA 5.1.6.c <u>General</u> Summarize narrative text including characters, setting, plot, and theme with supporting details <u>Extended</u>
Recall basic facts from narrative text | 4 | 0 | 0-1 | 1-2 | 0-1 | 1-4 | | | | | LA 5.1.6.d General Identify literary devices and explain the ways in which language is used Extended Identify the literary device of alliteration | 4 | 0 | 0-1 | 1-2 | 0-1 | 1-4 | | | | | LA 5.1.6.e General Summarize and analyze the main idea from informational text using supporting details Extended Identify the main idea from an informational text using supporting details | 4 | 0 | 0-1 | 1-2 | 0-1 | 1-4 | |---|---|-----|-----|-----|-----|-----| | LA 5.1.6.f General Understand and apply knowledge of organizational patterns found in informational text Extended Sequence three events in informational text using illustrations | 4 | 0 | 0-1 | 1-2 | 0-1 | 1-4 | | LA 5.1.6.g General Apply knowledge of text features to locate information and gain meaning from a text Extended Apply knowledge of text features to locate information on schedule or chart | 4 | 0-1 | 0-1 | 1-2 | 0-1 | 1-5 | | LA 5.1.6.h <u>General Describe</u> the defining characteristics of narrative and informational genres <u>Extended Discriminate between informational and narrative (fiction and nonfiction) genres</u> | 4 | 0 | 0-1 | 0-1 | 0-1 | 0-3 | | LA 5.1.6.k <u>General</u> Generate and/or answer literal, inferential, and critical questions, supporting answers using prior knowledge and literal and inferential information from the text and additional sources <u>Extended</u> <u>Answer literal questions using</u> information from the text to support answers | 4 | 0 | 1-2 | 1-2 | 0-1 | 2-5 | | Nebraska State Accountability - Alternate Assessment of Reading (NeSA-AAR) Table of Specifications | | | | | | | | | | |---|--------------------------------|---------|---------|---------|---------|---------------|--|--|--| | Grade 6 | | | | | | | | | | | Gr6 Vocabulary | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Total | | | | | LA 6.1.5 Vocabulary: Students will build literary, general academic, and content specific grade level vocabulary. | | | | | | | | | | | LA 6.1.5.a General Determine the meaning of words through structural analysis, using knowledge of Greek, Latin, and Anglo Saxon roots, prefixes, and suffixes to understand complex words, including words in science, mathematics, and social studies Extended Determine the meaning of words using roots, prefixes, and suffixes, including words in science, mathematics, and social studies | 4 | 0-1 | 1-2 | 1-2 | 1-2 | 3-7 | | | | | LA 6.1.5.c General Select and apply knowledge of context clues and text features to determine meaning of unknown words in a variety of text structures Extended Use context clues and text features to determine meaning of unknown words in a variety of text structures | 4 | 0 | 1-2 | 1-2 | 1-2 | 3-6 | | | | | LA 6.1.5.d General Identify semantic relationships Extended Identify semantic relationships | 3 | 0 | 0-1 | 0-2 | 0 | 0-3 | | | | | Gr6 Comprehension | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | ltem
Total | | | | | LA 6.1.6 Students will extract and construct meaning using prior knowledge, applying text information, and monitoring comprehension while reading grade level text. | | | | | | | | | | | LA 6.1.6.a General Explain how author's purpose and perspective affect the meaning and reliability of the text Extended Determine if the author's purpose is to inform | 4 | 0 | 0-1 | 1-2 | 0-1 | 1-4 | | | | | LA 6.1.6.b General Identify and analyze elements of narrative text Extended Identify elements of narrative text | 4 | 0 | 0-1 | 1-2 | 0-1 | 1-4 | | | | | LA 6.1.6.c General Summarize narrative text using understanding of characters, setting, sequence of events, plot, and theme Extended Recall basic facts from narrative text | 4 | 0 | 0-1 | 1-2 | 0-1 | 1-4 | | | | | LA 6.1.6.d General Interpret and explain the author's use of literary devices Extended Identify the use of literary devices in a narrative passage | 4 | 0 | 0-1 | 1-2 | 0-1 | 1-4 | | | | | LA 6.1.6.e General Summarize, analyze, and synthesize informational text using main idea and supporting details Extended Identify and retell the main idea from informational text | 4 | 0 | 0-1 | 1-2 | 0-1 | 1-4 | |--|---|-----|-----|-----|-----|-----| | LA 6.1.6.f General Apply knowledge of organizational patterns found in informational text Extended Identify organizational patterns found in informational text | 4 | 0 | 0-1 | 1-2 | 0-1 | 1-4 | | LA 6.1.6.g General Apply knowledge of text features to locate information and gain meaning from a text Extended Use text features to locate information | 4 | 0-1 | 0-1 | 1-2 | 0-1 | 1-5 | | LA 6.1.6.h General Distinguish between the defining characteristics of different narrative and informational genres Extended Identify a story book, text book, and magazine | 4 | 0 | 0-1 | 0-1 | 0-1 | 0-3 | | LA 6.1.6.k General Generate and/or answer literal, inferential, critical, and interpretive questions, supporting answers using prior knowledge and information from the text and additional sources Extended Answer literal questions using prior knowledge and supporting information from the text | 4 | 0 | 1-2 | 1-2 | 0-1 | 2-5 | | Nebraska State Accountability - Alternate Assessment of Reading (NeSA-AAR) Table of Specifications | | | | | | | | | | |---|--------------------------------|---------|---------|---------|---------|---------------|--|--|--| | Grade 7 | | | | | | | | | | | Gr7 Vocabulary | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Total | | | | | LA 7.1.5 Vocabulary: Students will build literary, general academic, and content specific grade level vocabulary. | | | | | 0 | | | | | | LA 7.1.5.a General Determine the meaning of words through structural analysis, using knowledge of Greek, Latin, and Anglo Saxon roots, prefixes, and suffixes to understand complex words, including words in science, mathematics, and social studies Extended Determine the meaning of words using roots, prefixes, and suffixes, including words in science, mathematics, and social studies | 4 | 0-1 | 1-2 | 1-2 | 1-2 | 3-7 | | | | | LA 7.1.5.c General Select and apply knowledge of context clues and text features appropriate to a particular text to determine meaning of unknown words Extended Use context clues and text features to determine meaning of unknown words | 4 | 0 | 1-2 | 1-2 | 1-2 | 3-6 | | | | | LA 7.1.5.d General Analyze semantic relationships Extended Identify semantic relationships | 3 | 0 | 0-1 | 0-2 | 0 | 0-3 | | | | | Gr7 Comprehension | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Total | | | | | LA 7.1.6 Students will extract and construct meaning using prior knowledge, applying text information, and monitoring comprehension while reading grade level text. | | | | | | | | | | | LA 7.1.6.a General Analyze the meaning, reliability, and validity of the text considering author's purpose and perspective Extended Determine if the author's purpose is to entertain or inform the reader | 4 | 0 | 0-1 | 1-2 | 0-1 | 1-4 | | | | | LA 7.1.6.b General Identify and analyze elements of narrative text Extended Identify elements of narrative text | 4 | 0 | 0-1 | 1-2 | 0-1 | 1-4 | | | | | LA 7.1.6.c General Analyze author's use of literary devices Extended Identify the use of literary devices in a narrative passage | 4 | 0 | 0-1 | 1-2 | 0-1 | 1-4 | | | | | LA 7.1.6.d General Summarize, analyze, and synthesize informational text using main idea and supporting details Extended Identify the main idea from informational text | 4 | 0 | 0-1 | 1-2 | 0-1 | 1-4 | | | | | LA 7.1.6.e General Apply knowledge of organizational patterns found in informational text Extended Identify organizational patterns found in informational text | 4 | 0 | 0-1 | 1-2 | 0-1 | 1-4 | |--|---|-----|-----|-----|-----|-----| | LA 7.1.6.f General Apply knowledge of text features to locate information and gain meaning from a text Extended Use text features to locate information | 4 | 0-1 | 0-1 | 1-2 | 0-1 | 1-5 | | LA 7.1.6.g General Explain and make inferences based on the characteristics of narrative and informational genres Extended Identify narrative and informational genres | 4 | 0 | 0-1 | 0-1 | 0-1 | 0-3 | | LA 7.1.6.j General Generate and/or answer literal, inferential, critical, and interpretive questions,
analyzing prior knowledge, information from the text and additional sources, to support answers Extended Answer literal questions using prior knowledge and supporting information from the text | 4 | 0 | 1-2 | 1-2 | 0-1 | 2-5 | | Nebraska State Accountability - Alternate Assessment of Reading (NeSA-AAR) Table of Specifications | | | | | | | | | | |---|--------------------------------|---------|---------|---------|---------|---------------|--|--|--| | Grade 8 | | | | | | | | | | | Gr8 Vocabulary | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Total | | | | | LA 8.1.5 Vocabulary: Students will build literary, general academic, and content specific grade level vocabulary. | | | | | | | | | | | LA 8.1.5.a General Determine the meaning of words through structural analysis, using knowledge of Greek, Latin, and Anglo Saxon roots, prefixes, and suffixes to understand complex words, including words in science, mathematics, and social studies Extended Determine the meaning of words using roots, prefixes, and suffixes, including words in science, mathematics, and social studies LA 8.1.5.c | 4 | 0-1 | 1-2 | 1-2 | 1-2 | 3-7 | | | | | General Select a context clue strategy to determine meaning of unknown words appropriate to text Extended Use context clues and text features to determine meaning of unknown words appropriate to text | 4 | 0 | 1-2 | 1-2 | 1-2 | 3-6 | | | | | LA 8.1.5.d General Analyze semantic relationships Extended Identify semantic relationships | 3 | 0 | 0-1 | 0-2 | 0 | 0-3 | | | | | Gr8 Comprehension | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Total | | | | | LA 8.1.6 Students will extract and construct meaning using prior knowledge, applying text information, and monitoring comprehension while reading grade level text. | | | | | | | | | | | LA 8.1.6.a <u>General Analyze</u> the meaning, reliability, and validity of the text considering author's purpose and perspective, and information from additional sources <u>Extended Determine</u> if the author's purpose is to persuade the reader | 4 | 0 | 0-1 | 1-2 | 0-1 | 1-4 | | | | | LA 8.1.6.b General Identify and analyze elements of narrative text Extended Identify elements of narrative text | 4 | 0 | 0-1 | 1-2 | 0-1 | 1-4 | | | | | <i>LA 8.1.6.c</i> <u>General</u> Analyze author's use of literary devices <u>Extended <i>Identify the use of literary devices in a narrative passage</i></u> | 4 | 0 | 0-1 | 1-2 | 0-1 | 1-4 | | | | | LA 8.1.6.d General Summarize, analyze, and synthesize informational text using main idea and supporting details Extended Identify and retell the main idea and supporting details from informational text | 4 | 0 | 0-1 | 1-2 | 0-1 | 1-4 | | | | | LA 8.1.6.e <u>General Apply knowledge of organizational patterns found in informational text</u> <u>Extended Identify organizational patterns found in informational text</u> | 4 | 0 | 0-1 | 1-2 | 0-1 | 1-4 | | | | | LA 8.1.6.f | | | | | | 200 0000 | |---|---|-----|-----|-----|-----|----------| | General Analyze and evaluate information from text features Extended Use text | 4 | 0-1 | 0-1 | 1-2 | 0-1 | 1-5 | | features to locate information | | | | | | | | LA 8.1.6.g | | | | | | | | General Analyze and make inferences based on the characteristics of narrative and | 4 | 0 | 0-1 | 0-1 | 0-1 | 0-3 | | informational genres | 4 | " | 0-1 | 0-1 | 0-1 | 0-3 | | Extended Identify narrative and informational genres | | | | | | | | LA 8.1.6.j | | | | | | | | General Generate and/or answer literal, inferential, critical, and interpretive questions, analyzing and synthesizing prior knowledge, information from the text and additional sources, to support answers Extended Answer literal and | 4 | 0 | 1-2 | 1-2 | 0-1 | 2-5 | | inferential questions using prior knowledge and supporting information from the text | | | | | | | | Nebraska State Accountability - Alternate Assessment of Reading (NeSA-AAR) Table of Specifications | | | | | | | | | | |--|--------------------------------|---------|---------|---------|---------|---------------|--|--|--| | High School | | | | | | | | | | | Gr12 Vocabulary | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Total | | | | | LA 12.1.5 Vocabulary: Students will build literary, general academic, and content specific grade level vocabulary. | | | | | | | | | | | LA 12.1.5.a General Determine the meaning of words through structural analysis, using knowledge of Greek, Latin, and Anglo Saxon roots, prefixes, and suffixes to understand complex words, including words in science, mathematics, and social studies Extended Determine the meaning of words using roots, prefixes, and suffixes, including words in science, mathematics, and social studies | 4 | 0-1 | 1-2 | 1-2 | 1-2 | 3-7 | | | | | LA 12.1.5.c General Independently apply a context clue strategy to determine meaning of unknown words in text Extended Use context clues and text features to determine meaning of unknown words in text | 4 | 0 | 1-2 | 1-2 | 1-2 | 3-6 | | | | | LA 12.1.5.d <u>General</u> Use semantic relationships to evaluate, defend, and make judgments <u>Extended</u> Identify semantic relationships | 3 | 0 | 0-1 | 0-2 | 0 | 0-3 | | | | | Gr12 Comprehension | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Total | | | | | LA 12.1.6 Students will extract and construct meaning using prior knowledge, applying text information, and monitoring comprehension while reading grade level text. | | | | | | | | | | | LA 12.1.6.a General Evaluate the meaning, reliability, and validity of the text considering author's purpose, perspective, and information from additional sources Extended Determine if the author's purpose is to entertain, inform, or persuade | 4 | 0 | 0-1 | 1-2 | 0-1 | 1-4 | | | | | LA 12.1.6.b General Analyze and evaluate elements of narrative text Extended Identify elements of narrative text | 4 | 0 | 0-1 | 1-2 | 0-1 | 1-4 | | | | | LA 12.1.6.c General Analyze the function and critique the effects of the author's use of stylistic and literary devices Extended Identify the use of literary devices in a narrative passage | 4 | 0 | 0-1 | 1-2 | 0-1 | 1-4 | | | | | LA 12.1.6.d General Summarize, analyze, synthesize, and evaluate informational text Extended Identify and retell the main idea and supporting details from informational text | 4 | 0 | 0-1 | 1-2 | 0-1 | 1-4 | | | | | LA 12.1.6.e General Apply knowledge of organizational patterns found in informational text Extended Identify organizational patterns found in informational text | 4 | 0 | 0-1 | 1-2 | 0-1 | 1-4 | |--|---|-----|-----|-----|-----|-----| | LA 12.1.6.f General Analyze and evaluate information from text features Extended Use text features to locate information | 4 | 0-1 | 0-1 | 1-2 | 0-1 | 1-5 | | LA 12.1.6.g General Analyze and evaluate inferences based on the characteristics of narrative and informational genres and provide evidence from the text to support understanding Extended Identify narrative and informational genres | 4 | 0 | 0-1 | 0-1 | 0-1 | 0-3 | | LA 12.1.6.j General Generate and/or answer literal, inferential, critical, and interpretive questions, analyzing, synthesizing, and evaluating prior knowledge, information from the text and additional sources, to support answers Extended Generate/answer literal and inferential questions using prior knowledge and supporting information from the text | 4 | 0 | 1-2 | 1-2 | 0-1 | 2-5 | ## **Appendix B: NeSA-AAM Test Blueprint** | Nebraska State Accountability - Alternate Assessment of
Specification | Mathe | matics | (NeSA | -AAM) | Tables | of | |--|-----------------------------------|---------|---------|---------|---------|----------------| | Grade 3 | | | | | | | | NUMBER SENSE | | | | | | | | Gr3 Number System | Highest
DOK
Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 3.1.1 Students will represent and show relationships among positive rational numbers within the base-ten number system. | | | | | | | | MA 3.1.1.e <u>General</u> Demonstrate multiple equivalent representations for numbers up to 10,000 <u>Extended</u> <u>Identify representations of whole numbers 0-10</u> | 3 | 0-1 | 0-1 | 0-2 | 0 | 1-3 | | MA 3.1.1.g <u>General</u> Compare and order whole numbers through the thousands <u>Extended</u> Compare and order whole numbers 0-10 | 4 | 0 | 0-2 | 0-2 | 0-2 | 1-4 | | MA 3.1.1.h
General Use visual models to represent fractions of halves, thirds, and fourths as parts of a whole and parts of a set Extended Use models to represent halves as parts of a whole and parts of a set | 3 | 0-1 | 1-2 | 0-1 | 0 | 1-4 | | MA 3.1.1.i <u>General</u> Round a given number to tens or hundreds <u>Extended</u> Recognize basic numerical concepts of closer and farther | 4 | 0 | 0-1 | 0-1 | 0-1 | 1-2 | | Gr3 Operations | Highest
DOK
Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 3.1.2 Students will demonstrate the meaning of multiplication and division with whole numbers. | | | | | | | | MA 3.1.2.a General Represent multiplication as repeated addition using objects, drawings, words, and symbols Extended Represent a number up to 10 in equal sized groups | 4 | 0 | 0-1 | 0-2 | 0-1 | 1-3 | | MA 3.1.2.d General Use drawings, words, and symbols to explain the meaning of multiplication using an array Extended Use drawings, words, and symbols to explain the meaning of multiplication | 4 | 0-1 | 0-1 | 0-1 | 0-2 | 1-3 | | GEOMETRIC/MEASUREMENT | CONCE | PTS | | | | | | Gr3 Characteristics | Highest
DOK
Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 3.2.1 Students will identify characteristics and describe properties of two dimensional shapes and three-dimensional objects. | | | | | | | | 3
Highest
DOK
Stage
Tested | O-1 | O-1
Stage 2 | 0-2
Stage 3 | 0 | 1-2 | |--|---|-----------------------|---|--|--| | DOK
Stage | Stage 1 | Stage 2 | Stage 3 | | | | | | | | Stage 4 | Item
Totals | | | | | | | | | 3 | 0-1 | 0-1 | 0-2 | 0 | 1-2 | | Highest
DOK
Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | | | | | | | | 3 | 0-1 | 0-1 | 0-1 | 0 | 1-2 | | 4 | 0 | 0 | 0-2 | 0-2 | 1-3 | | | | | | | | | Highest
DOK
Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | | | | | | | | 4 | 0 | 0-1 | 0-2 | 0-2 | 1-2 | | Highest
DOK
Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | | | | | | | | 4 | 0 | 0-2 | 0-3 | 0-2 | 1-3 | | H ST | ighest DOK Stage ested 3 4 ighest DOK Stage ested 4 ighest DOK Stage ested | ighest DOK Stage 1 3 | Stage 1 Stage 2 3 0-1 0-1 4 0 0 ighest DOK Stage 1 Stage 2 ested Stage 1 Stage 2 4 0 0-1 ighest Pested Pested Stage 1 Stage 2 ested Stage 1 Stage 2 Stage 1 Stage 2 | Stage 1 Stage 2 Stage 3 3 0-1 0-1 0-1 4 0 0 0-2 Ighest DOK Stage Tested 4 0 0-1 0-2 Ighest Post Stage Tested 5 Stage 1 Stage 2 Stage 3 | ighest DOK Stage 1 Stage 2 Stage 3 Stage 4 3 0-1 0-1 0-1 0 4 0 0 0-2 0-2 ighest DOK Stage rested 4 0 0-1 0-2 Stage 3 Stage 4 4 0 0-1 0-2 0-2 ighest DOK Stage rested 5 Stage 1 Stage 2 Stage 3 Stage 4 5 Stage rested 5 Stage 2 Stage 3 Stage 4 | | Gr3 Procedures | Highest
DOK
Stage | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | |---|-----------------------------------|---------|---------|---------|---------|----------------| | | Tested | | | | | | | MA 3.3.3 Students will identify and apply properties of whole numbers to solve equations involving addition and subtraction. | | | | | | | | MA 3.3.3.b General Solve simple one-step whole number equations involving addition and subtraction Extended Solve simple one-step single digit equations involving addition and subtraction with sums and differences 0-9 | 4 | 0 | 0 | 0-2 | 0-2 | 1-2 | | DATA ANALYSIS/PROBABILITY | CONCE | PTS | | | | t. | | Gr3 Display and Analysis | Highest
DOK
Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 3.4.1 Students will organize, display, compare, and interpret data. | | | | | | | | MA 3.4.1.a General Represent data using horizontal and vertical bar graphs Extended Represent data using vertical bar graphs | 4 | 0 | 0-1 | 0-3 | 0-2 | 1-3 | | MA 3.4.1.c <u>General</u> Interpret data using horizontal and vertical bar graphs <u>Extended</u> Interpret data on vertical bar graphs | 4 | 0 | 0 | 0-2 | 0-2 | 1-3 | | Nebraska State Accountability - Alternate Assessment of Mathematics (NeSA-AAM) Tables of
Specification | | | | | | | | | | |--|--------------------------------|---------|---------|---------|---------|----------------|--|--|--| | Grade 4
NUMBER SENSE | | | | | | | | | | | Gr4 Number System | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | | | | MA 4.1.1 Students will represent and show relationships among positive rational numbers within the base-ten number system. | | | | | | | | | | | MA 4.1.1.b <u>General</u> Demonstrate multiple equivalent representations for decimal numbers through the hundredths place <u>Extended</u> Identify representations of whole numbers from 0-20 | 3 | 0-1 | 0-1 | 0-2 | 0 | 1-3 | | | | | MA 4.1.1.c <u>General</u> Compare and order whole numbers and decimals through the hundredths place <u>Extended</u> Compare and order whole numbers 0-20 | 4 | 0 | 0-2 | 0-2 | 0-2 | 1-4 | | | | | MA 4.1.1.e General Represent a fraction as parts of a whole and/or parts of a set Extended Use models to represent haives and fourths as parts of a whole and parts of a set | 3 | 0-1 | 1-2 | 0-1 | 0 | 1-3 | | | | | MA 4.1.1.f General Use visual models to find equivalent fractions Extended Use models to identify equivalent fractions 1/2 and whole | 3 | 0-1 | 0-1 | 0-1 | 0 | 1-2 | | | | | Gr4 Operations | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | | | | MA 4.1.2 Students will demonstrate the meaning of division with whole numbers. | | | | | | | | | | | MA 4.1.2.a <u>General</u> Use drawings, words, and symbols to explain the meaning of division <u>Extended</u> Represent a number up to 20 in equal sized groups | 4 | 0 | 0-1 | 0-2 | 0-2 | 1-2 | | | | | Gr4 Computation | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | | | | MA 4.1.2 Students will compute fluently and accurately using appropriate strategies and tools. | | | | | | | | | | | MA 4.1.3.b <u>General</u> Add and subtract decimals to the hundredths place <u>Extended</u> Add and subtract single digit numbers | 4 | 0 | 0 | 0-2 | 0-2 | 1-2 | | | | | W | 20 | <u> </u> | | | 10 | | |--|--------------------------------|----------|---------|---------|---------|----------------| | MA 4.1.3.c General Multiply two-digit whole numbers Extended Add equal groups with sums up to 20 | 4 | 0 | 0-1 | 0-2 | 0-1 | 1-2 | | MA 4.1.3.e General Mentally compute multiplication and division involving powers of 10 Extended Use groups of 10 for computation up to 50 | 4 | 0 | 0-1 | 0-2 | 0-1 | 1-2 | | MA 4.1.3.f General Select and apply the appropriate method of computation when problem solving Extended Select the appropriate method of computation (addition and subtraction) when problem solving | 4 | 0 | 0 | 0-2 | 0-2 | 1-3 | | GEOMETRIC/MEASUREMENT | CONCE | PTS | | | | | | Gr4 Characteristics | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 4.2.1 Students will classify two-dimensional shapes and three- dimensional objects. | | | | | | | | MA 4.2.1.a General Identify two- and three- dimensional shapes according to their sides and angle properties Extended Identify two dimensional shapes (triangle, rectangle) | 3 | 0-1 | 0-1 | 0-2 | 0 | 1-2 | | MA 4.2.1.b General Classify an angle as acute, obtuse, or right Extended Identify the number of angles/corners of a given shape | 3 | 0 | 0-1 | 0-2 | 0 | 1-2 | | MA 4.2.1.c General Identify parallel, perpendicular, and intersecting lines Extended Recognize parallel and intersecting lines | 3 | 0-1 | 0-1 | 0-2 | 0 | 1-2 | | Gr4 Coordinate Geometry | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 4.2.2 Students will describe locations using coordinate geometry. | | | | | | | | MA 4.2.2.a General Identify the ordered pair of a plotted point in the first quadrant by its location Extended Determine the distance between two points on a number line | 3 | 0 | 0-1 | 0-2 | 0 | 1-2 | | Gr4 Measurement | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 4.2.5 Students will apply appropriate procedures and tools to estimate and determine measurements using customary and metric units. | | | | | | | | MA 4.2.5.b General Identify time to the minute on an analog clock Extended Identify time to the hour on an analog clock | 3 | 0 | 0-2 | 0-1 | 0 | 1-2 | | | | 45- | 10- | 45. | | |
---|--------------------------------|---------|---------|---------|---------|----------------| | MA 4.2.5.c <u>General</u> Solve problems involving elapsed time <u>Extended</u> Solve problems involving elapsed time to the hour | 3 | 0 | 0-1 | 0-3 | 0 | 1-3 | | MA 4.2.5.d General Identify the appropriate metric unit for measuring length, weight, and capacity/volume Extended Determine the appropriate tool for measuring length, capacity/volume, and weight | 3 | 0-1 | 0-2 | 0-2 | 0 | 1-3 | | MA 4.2.5.g General Compute simple unit conversions for length within a system of measurement Extended Identify the length of an object using non-standard units | 3 | 0 | 0-2 | 0-2 | 0 | 1-2 | | ALGEBRAIC CONCEP | TS | | | | | | | Gr4 Relationships | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 4.3.1 Students will represent and analyze relationships. | | | | | | | | MA 4.3.1.c General Use symbols to compare quantities Extended Use objects and symbols (<, >, =) to compare quantities | 3 | 0-1 | 0-2 | 0-3 | 0 | 1-3 | | MA 4.3.1.d General Select appropriate operational and relational symbols to make a number sentence true Extended Select appropriate operational symbols (addition and subtraction) to make a number sentence true | 3 | 0-1 | 0-2 | 0-3 | 0 | 1-3 | | Gr4 Procedures | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 4.3.3 Students will identify and apply properties of whole numbers to solve equations involving multiplication and division. | | | | | | | | MA 4.3.3.c General Use symbolic representations of the commutative property of multiplication Extended Identify the commutative property of addition using pictures and models | 4 | 0 | 0-1 | 0-2 | 0-2 | 1-2 | | MA 4.3.3.d General Solve simple one-step whole number equations Extended Solve simple one-step single digit equations involving addition and subtraction with sums and differences 0-20 | 4 | 0 | 0 | 0-2 | 0-2 | 1-2 | | DATA ANALYSIS/PROBABILITY | CONCE | PTS | | | | | | Gr4 Display and Analysis | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 4.4.1 Students will organize, display, compare, and interpret data. | | | | | | | | | | | | | | | | MA 4.4.1.b General Compare different representations of the same data Extended Compare different representations of the same data | 4 | 0 | 0-1 | 0-3 | 0-2 | 1-3 | |---|---|---|-----|-----|-----|-----| | MA 4.4.1.c <u>General</u> Interpret data and draw conclusions using dot/line plots <u>Extended</u> Interpret data on vertical and horizontal bar graphs | 4 | 0 | 0 | 0-2 | 0-2 | 1-3 | | Nebraska State Accountability - Alternate Assessment of Specification | f Mathe | matics | (NeSA- | ·AAM) | Tables | of | |---|--------------------------------|---------|---------|---------|---------|----------------| | Grade 5 NUMBER SENSE | | | | | | | | NOWIBER SENSE | | | | | | | | Gr5 Number System | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 5.1.1 Students will represent and show relationships among positive rational numbers. | | | | | | | | MA 5.1.1.a General Demonstrate multiple equivalent representations for whole numbers and decimal numbers through the thousandths place Extended Identify equivalent representations of whole numbers from 0-50 | 3 | 0-1 | 0-1 | 0-2 | 0 | 1-3 | | MA 5.1.1.b General Compare and order whole numbers, fractions, and decimals through the thousandths place Extended Compare and order whole numbers 0-30 | 4 | 0 | 0-2 | 0-2 | 0-2 | 1-4 | | MA 5.1.1.c General Identify and name fractions in their simplest form and find common denominators for fractions Extended Use models to represent halves, fourths, and thirds as parts of a whole and parts of a set | 3 | 0-1 | 1-2 | 0-2 | 0 | 1-3 | | MA 5.1.1.d General Recognize and generate equivalent forms of commonly used fractions, decimals, and percents Extended Use models to identify equivalent fractions 1/4, 1/2, and whole | 3 | 0-1 | 0-2 | 0-2 | 0 | 1-3 | | MA 5.1.1.e General Classify a number as prime or composite Extended Classify a number as even or odd | 3 | 0-1 | 0-2 | 0-2 | 0 | 1-3 | | MA 5.1.1.f General Identify factors and multiples of any whole number Extended Identify groups of 2, 5s, and 10s | 3 | 0-1 | 0-2 | 0-2 | 0 | 1-3 | | Gr5 Computation | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 5.1.3 Students will compute fluently and accurately using appropriate strategies and tools. | | | | | | | | MA 5.1.3.a General Add and subtract positive rational numbers Extended Add and subtract 2-digit by 2-digit whole numbers without regrouping | 4 | 0 | 0 | 0-3 | 0-2 | 1-3 | | MA 5.1.3.b General Select, apply, and explain the appropriate method of computation when problem solving Extended Select the appropriate method of computation (addition, subtraction, and multiplication) when problem solving | 4 | 0 | 0 | 0-2 | 0-2 | 1-3 | | MA 5.1.3.c General Multiply decimals Extended Multiply single-digit numbers (0 to 5) | 4 | 0 | 0 | 0-3 | 0-2 | 1-3 | |---|--------------------------------|------------------|------------------|------------------|------------------|----------------| | MA 5.1.3.d General Divide a decimal by a whole number Extended Divide single digit numbers by single digit numbers resulting in a quotient that is a whole number | 4 | 0 | 0 | 0-3 | 0-2 | 1-3 | | Gr5 Estimation | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 5.1.4 Students will estimate and check reasonableness of answers using appropriate strategies and tools. | | | | | | | | MA 5.1.4.a General Estimate the sums and differences of positive rational numbers to check the reasonableness of such results Extended Apply estimation to the nearest 10 on addition results | 4 | 0 | 0 | 0-3 | 0-2 | 1-3 | | GEOMETRIC/MEASUREMENT | CONCER | TS | | | | | | Gr5 Characteristics | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 5.2.1 Students will describe relationships among two-dimensional shapes and three-dimensional objects. | | | | | | | | MA 5.2.1.a General Identify the number of edges, faces, and vertices of triangular and rectangular prisms Extended Identify the number of sides of a given polygon | 3 | 0 | 0-2 | 0-3 | 0 | 1-3 | | MA 5.2.1.d General Identify degrees on a circle Extended Identify the radius and diameter of a circle | 3 | 0-1 | 0-3 | 0-2 | 0 | 1-3 | | Gr5 Coordinate Geometry | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 5.2.2 Students will identify locations using coordinate geometry. | | | | | | | | MA 5.2.2.a General Plot the location of an ordered pair in the first quadrant Extended Determine the location of a number on a number line | 3 | 0 | 0-1 | 0-3 | 0 | 1-3 | | Gr5 Measurement | Highest
DOK Stage
Tested | DOK 1
Stage 1 | DOK 1
Stage 2 | DOK 1
Stage 3 | DOK 2
Stage 4 | Stage | | MA 5.2.5 Students will apply appropriate procedures, tools and formulas to determine measurements using customary and metric units. | | | | | | | | MA 5.2.5.b General Identify correct unit (customary or metric) to the measurement situation Extended Identify the customary units for measuring length | 3 | 0 | 0-1 | 0-3 | 0 | 1-3 | |--|--------------------------------|---------|---------|---------|---------|----------------| | MA 5.2.5.f General Determine the area of rectangles and squares Extended Identify the perimeter of an object | 3 | 0 | 0-1 | 0-3 | 0 | 1-3 | | ALGEBRAIC CONCEPT | ΓS | | | | | | | Gr5 Modeling in Context | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 5.3.2 Students will create, use, and compare models representing mathematical situations. | | | | | | | | MA 5.3.2.a General Model situations that involve the addition, subtraction, and multiplication of positive rational numbers using words, graphs, and tables Extended Model situations that involve addition and subtraction of numbers up to 50 | 4 | 0 | 0 | 0-2 | 0-2 | 1-3 | | Gr5 Procedures | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 5.3.3 Students will apply properties of simple positive rational numbers to solve one-
step equations. | | | | | | | | MA 5.3.3.b General Use symbolic representations of the associative property Extended Identify the associative property of addition using pictures and models | 4 | 0 | 0-1 | 0-3 | 0-2 | 1-3 | | MA 5.3.3.c General Evaluate numerical expressions by using parentheses with respect to order of operations Extended Demonstrate understanding of order of operations involving one- digit addition with parentheses | 4 | 0 | 0 | 0-2 | 0-3 | 1-3 | | MA 5.3.3.d <u>General</u> Evaluate simple algebraic expressions involving addition and subtraction <u>Extended</u> Evaluate simple algebraic expressions involving
addition | 4 | 0 | 0 | 0-2 | 0-2 | 1-3 | | MA 5.3.3.e General Solve one-step addition and subtraction equations involving common positive rational numbers Extended Solve simple one-step equations involving addition | 4 | 0 | 0 | 0-1 | 1-3 | 1-3 | | DATA ANALYSIS/PROBABILITY | CONCE | PTS | | | | | | Gr5 Display and Analysis | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 5.4.1 Students will organize, display, compare, and interpret data. | | | | | | | | MA 5.4.1.a General Represent data using line graphs Extended Identify data on a line graph | 3 | 0-1 | 0-2 | 0-3 | 0 | 1-3 | | MA 5.4.1.b General Represent the same set of data in different formats Extended Identify the same data in different formats | 4 | 0 | 0 | 0 | 0-3 | 1-3 | |---|-----------------------------|---|---------|---------|---------|----------------| | MA 5.4.1.c General Draw conclusions based on a set of data Extended Interpret data on a line graph | 4 | 0 | 0 | 0-2 | 0-3 | 1-3 | | GrS Probability | Highes
DOK Sta
Tested | | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 5.4.3 Students will organize, display, compare, and interpret data. | | | | | | | | MA5.4.3.b <u>General</u> Generate a list of possible outcomes for a simple event <u>Extended</u> Identify a possible outcome | 4 | 0 | 0-2 | 0-2 | 0-1 | 1-3 | | Nebraska State Accountability - Alternate Assessment o | of Mathe | matics | (NeSA | -AAM) | Tables | of | |---|--------------------------------|---------|---------|---------|---------|----------------| | Specification
Grade 6 | | | | | | | | NUMBER SENSE | | | | | | | | Gr6 Number System | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 6.1.1 Students will represent and show relationships among positive rational numbers and integers. | | | | | | | | MA 6.1.1.b General Compare and order positive and negative integers Extended Compare and order whole numbers up to 40 | 4 | 0 | 0-2 | 0-2 | 0-2 | 1-4 | | MA 6.1.1.e <u>General</u> Identify the prime factorization of numbers <u>Extended</u> Identify factorization of a number up to 20 | 4 | 0 | 0-2 | 0-2 | 0-2 | 1-3 | | Gr6 Operations | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 6.1.2 Students will demonstrate the meaning of arithmetic operations with positive fractions and decimals. | | | | | | | | MA 6.1.2.a <u>General</u> Use drawings, words, and symbols to explain the meaning of addition and subtraction of fractions <u>Extended</u> Use drawings to subtract halves, thirds, and fourths from a whole | 3 | 0 | 0-2 | 0-3 | 0 | 1-3 | | MA 6.1.2.b General Use drawings, words, and symbols to explain the meaning of addition and subtraction of decimals Extended Recognize decimal representation of money | 4 | 0-1 | 0-1 | 0-2 | 0-2 | 1-3 | | Gr6 Computation | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 6.1.3 Students will compute fluently and accurately using appropriate strategies and tools. | | | | | | | | MA 6.1.3.a <u>General</u> Multiply and divide positive rational numbers <u>Extended</u> Multiply positive single digit numbers | 4 | 0 | 0 | 0-3 | 0-2 | 1-3 | | MA 6.1.3.b General Select and apply the appropriate method of computation when problem solving Extended Select the appropriate method of computation (addition, subtraction, multiplication, and division) when problem solving | 4 | 0 | 0 | 0-2 | 0-2 | 1-3 | | | I mat a | | _ | | | | |---|----------------------|---------|---------|---------|---------|--------| | Gr6 Estimation | Highest
DOK Stage | | | | | Item | | | Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Totals | | MA 6.1.4 Students will estimate and check reasonableness of answers | | | Z 10 | | | | | using appropriate strategies and tools. | | | | | | | | MA 6.1.4.a | | | | | | | | General Use appropriate estimate methods to check the reasonableness of | | 5 475 | P001 | | 270.000 | 400000 | | solutions for problems involving positive rational numbers | 4 | 0 | 0 | 0-3 | 0-2 | 1-3 | | Extended Apply estimation to the nearest 10 on addition and subtraction results | | | | | | | | GEOMETRIC/MEASUREMENT | CONCE | PTS | | | | | | Gr6 Coordinate Geometry | Highest | | | | | | | | DOK Stage | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item | | | Tested | | | | | Totals | | MA 6.2.2 Students will identify locations using coordinate geometry. | | | | | | | | | | | | | | | | MA 6.2.2.a | | | | | | | | General Identify the ordered pair of a plotted point in the coordinate plane | 3 | 0 | 0-2 | 0-3 | o | 1-3 | | Extended Identify the plotted point on a 4 x 4 grid | | | 0-2 | 0-3 | Ů | 1-5 | | Gr6 Spatial Modeling | Highest | | | | | | | | DOK Stage | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item | | | Tested | Stage 1 | Stage 2 | stage s | Stage 4 | Totals | | MA 6.2.4 Students will use visualization of geometric models to solve | | | | | | | | problems. | | | | | | | | MA 6.2.4.a | | | | | | | | General Identify two-dimensional drawings of three-dimensional objects Extended | 3 | 0-1 | 0-1 | 0-3 | o | 1-3 | | Identify a two-dimensional shape and match it to a three- dimensional object | | 0-1 | 0-1 | 0-3 | | 1-5 | | Gr6 Measurement | Highest | | | | | | | | DOK Stage | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item | | | Tested | Juage 1 | Stage 2 | Stage 5 | Juage 4 | Totals | | MA 6.2.5 Students will apply appropriate procedures, tools, and formulas | | | | | | | | to determine measurements. | | | | | | | | MA 6.2.5.d | | | | | | | | General Determine the perimeter of polygons | 4 | 0 | 0 | 0-3 | 0-2 | 1-3 | | Extended Determine the perimeter of polygons (triangle, rectangle, square) | 4 | 0 | " | 0-3 | 0-2 | 1-5 | | MA 6.2.5.e | | | | | | | | General Determine the area of parallelograms and triangles | 4 | 0 | 0 | 0-3 | 0-2 | 1-3 | | Extended Determine the area of a square | 4 | 0 | 0 | 0-5 | 0-2 | 1-5 | | ALGEBRAIC CONCEP | TS | | | | | | | Gr6 Relationships | Highest | | | | | | | | DOK Stage | Stage 1 | Stage 2 | Stage 3 | Stage 4 | ltem | | | Tested | 3-3 | | | 3 | Totals | | | | | | | | | | MA 6.3.1 Students will represent, analyze, and use relationships to make generalizations. | | | | | | | |--|--------------------------------|---------|---------|---------|---------|----------------| | MA 6.3.1.a General Describe and create simple algebraic expressions from words and tables Extended Match a simple algebraic expression involving addition to given tables | 4 | 0 | 0-1 | 0-2 | 0-3 | 1-3 | | MA 6.3.1.b General Use a variable to describe a situation with an equation Extended Use a symbol to represent a numeric value in a simple equation | 3 | 0 | 0-2 | 0-3 | 0 | 1-3 | | Gr6 Modeling in Context | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 6.3.2 Students will create, use, and interpret models of quantitative relationships. | | | | | | | | MA 6.3.2.a General Model contextualized problems using various representations Extended Model representations of coin combinations up to \$1.00 | 4 | 0 | 0-2 | 0-2 | 0-3 | 1-3 | | Gr6 Procedures | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 6.3.3 Students will apply properties to solve equations. | | | | | | | | MA 6.3.3.b General Evaluate numerical expressions containing multiple operations with respect to order of operations Extended Demonstrate understanding of order of operations involving one-digit addition, subtraction, and multiplication with parentheses with parentheses | 4 | 0 | 0 | 0-2 | 0-3 | 1-3 | | MA 6.3.3.c General Evaluate simple algebraic expressions involving multiplication and division Extended Evaluate simple algebraic expressions involving addition and subtraction | 4 | 0 | 0 | 0-2 | 0-2 | 1-3 | | MA 6.3.3.d General Solve one-step equations involving positive rational numbers Extended Solve simple one-step equations involving addition and subtraction | 4 | 0 | 0 | 0-2 | 0-2 | 1-3 | | MA 6.3.3.e General Identify and explain the properties of equality used in solving equations Extended Solve an addition problem demonstrating the commutative property of equality | 4 | 0 | 0-2 | 0-2 | 0-2 | 1-3 | | DATA ANALYSIS/PROBABILITY | CONCE | PTS | | | | | | Gr6 Display and Analysis | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 6.4.1 Students will organize, display, compare, and interpret data. | | | | | | | | MA 6.4.1.b General Compare and interpret data sets and their graphical representations Extended Interpret data on a circle graph | 4 | 0 | 0 | 0-2 | 0-3 | 1-3 | |---|--------------------------------|---------|---------|---------|---------|----------------| | MA 6.4.1.c General Find the mean, median, mode, and range for a set of data Extended Find the mode for a set of data | 4 | 0 | 0-1 | 0-2 | 0-2 | 1-3 | | Gr6 Probability | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 6.4.3 Students will apply basic concepts of probability. | | | | | | | | MA 6.4.3.b General Compute theoretical probabilities for
independent events Extended Determine the theoretical probability of an event using given data | 4 | 0 | 0-2 | 0-2 | 0-2 | 1-3 | | Nebraska State Accountability - Alternate Assessment o | f Mathe | matics | (NeSA | -AAM) | Tables | of | |--|--------------------------------|---------|---------|---------|---------|----------------| | Specification | | | | | | | | Grade 7 | | | | | | | | NUMBER SENSE | | | | | | | | Gr7 Number System | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 7.1.1 Students will represent and show relationships among rational numbers. | | | | | | | | MA 7.1.1.a General Show equivalence among fractions, decimals, and percents Extended Use models to identify equivalents between fractions and percents (1 and 100%, 1/2 and 50%, 1/4 and 25%) | 4 | 0-1 | 0-3 | 0-2 | 0-1 | 1-3 | | MA 7.1.1.b General Compare and order rational numbers (fractions, decimals, percents) Extended Compare and order numbers up to 50 | 4 | 0 | 0-2 | 0-2 | 0-2 | 1-4 | | Gr7 Computation | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 7.1.3 Students will compute fluently and accurately using appropriate strategies and tools. | | | | | | | | MA 7.1.3.a General Compute accurately with integers Extended Divide a positive two digit number by a single digit number | 4 | 0 | 0-1 | 0-3 | 0-2 | 1-3 | | MA 7.1.3.b General Select, apply, and explain the method of computation when problem solving using integers and positive rational numbers Extended Select and apply the appropriate method of computation (addition, subtraction, and multiplication) when problem solving | 4 | 0 | 0 | 0-2 | 0-2 | 1-3 | | MA 7.1.3.c General Solve problems involving percent of numbers Extended Compare given percents (greater than, less than, equal to) | 4 | 0 | 0-1 | 0-3 | 0-2 | 1-3 | | Gr7 Estimation | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 7.1.4 Students will estimate and check reasonableness of answers using appropriate strategies and tools. | | | | | | | | MA 7.1.4.a General Use estimation methods to check the reasonableness of solutions for problems involving integers and positive rational numbers Extended Apply estimation to the nearest 10 on addition and subtraction results | 4 | 0 | 0 | 0-3 | 0-2 | 1-3 | | GEOMETRIC/MEASUREMENT | CONCE | PTS | | | | | | Gr7 Coordinate Geometry | Highest | | | | | | |--|--------------------------------|---------|---------|---------|---------|----------------| | | DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 7.2.2 Students will identify locations using coordinate geometry. | | | | 2 | | | | MA 7.2.2.a <u>General</u> Plot the location of an ordered pair in the coordinate plane <u>Extended</u> Plot the location of an ordered pair on a 4 x 4 grid | 3 | 0 | 0-1 | 0-3 | 0 | 1-3 | | MA 7.2.c General Find the distance between points along horizontal and vertical lines of a coordinate plane Extended Identify the distance between two given points along horizontal and vertical lines of a grid | 3 | 0 | 0-1 | 0-3 | 0 | 1-3 | | Gr7 Transformations | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 7.2.3 Students will use transformations and symmetry to analyze geometric shapes. | | | | | | | | MA 7.2.3.b General Perform and describe positions and orientation of shapes under a single transformation on an coordinate plane Extended Identify congruent shapes | 3 | 0 | 0-2 | 0-2 | 0 | 1-3 | | Gr7 Measurement | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 7.2.5 Students will apply appropriate procedures, tools, and formulas to determine measurements. | | | | | | | | MA 7.2.5.b General Determine the area of trapezoids and circles, and the circumference of circles Extended Determine the area of a rectangle (not a square) | 4 | 0 | 0 | 0-3 | 0-2 | 1-3 | | ALGEBRAIC CONCEP | TS | | | | | | | Gr7 Relationships | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 7.3.1 Students will represent and analyze relationships using algebraic symbols. | | | | | | | | MA 7.3.1.a <u>General</u> Describe and create algebraic expressions from words, tables, and graphs <u>Extended</u> Match a simple algebraic expression involving addition and subtraction to a given table, chart, or illustration | 4 | 0 | 0-1 | 0-2 | 0-3 | 1-3 | | MA 7.3.1.b General Use a variable to describe a situation with an inequality Extended Identify a correct inequality | 4 | 0 | 0-1 | 0-2 | 0-3 | 1-3 | | Gr7 Modeling in Context | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 7.3.2 Students will create, use, and interpret models of quantitative relationships. | | | | | | | |---|--------------------------------|---------|---------|---------|---------|----------------| | Control to the state of the control to | | | | | | | | MA 7.3.2.a General Model contextualized problems using various representations Extended Recognize addition number sentences using various representations | 3 | 0-1 | 0-1 | 0-3 | 0 | 1-3 | | Gr7 Procedures | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 7.3.3 Students will apply properties to solve equations and inequalities. | | | | | | | | MA 7.3.3.c General Given the value of the variable(s), evaluate algebraic expressions with respect to order of operations Extended Evaluate variable expressions with respect to order of operations in addition, subtraction, and multiplication with parentheses | 4 | 0 | 0 | 0-2 | 0-2 | 1-3 | | MA 7.3.3.d <u>General</u> Solve two-step equations involving integers and positive numbers <u>Extended</u> Solve one-step equations involving addition or subtraction | 4 | 0 | 0-1 | 0-3 | 0-1 | 1-3 | | DATA ANALYSIS/PROBABILITY | CONCE | PTS | | | | | | Gr7 Display and Analysis | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 7.4.1 Students will formulate questions that can be addressed with data, and then organize, display, and analyze the relevant data to answer their questions. | | | | | | | | MA 7.4.1.a <u>General</u> Analyze data sets and interest their graphical representations Extended Identify and interpret a data set | 4 | 0 | 0-2 | 0-3 | 0-2 | 1-3 | | MA 7.4.1.b <u>General</u> Find and interpret mean, median, mode, and range for a set of data <u>Extended</u> Find the median for a set of data | 4 | 0 | 0-1 | 0-2 | 0-2 | 1-3 | | Gr7 Probability | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 7.4.3 Students will apply and interpret basic concepts of probability. | | | | | | | | MA 7.4.3.a General Find the probability of independent compound events Extended Determine the probability of a given event (always, sometimes, never) | 3 | 0 | 0-1 | 0-3 | 0 | 1-3 | | MA 7.4.3.b General Compare and contracts theoretical and experimental probabilities Extended Compare theoretical probabilities | 4 | 0 | 0-1 | 0-2 | 0-2 | 1-3 | | Nebraska State Accountability - Alternate Assessment
Specification | of Mathe | matics | (NeSA | -AAM) | Tables | of |
--|--------------------------------|---------|---------|---------|---------|----------------| | Grade 8 | | | | | | | | NUMBER SENSE | | | | | | | | Gr8 Number System | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 8.1.1 Students will represent and show relationships among real numbers. | | | | | | | | MA 8.1.1.a General Compare and order real numbers Extended Compare and order positive and negative integers (-50 to 50) | 4 | 0 | 0-2 | 0-3 | 0-2 | 1-4 | | MA 8.1.1.d General Classify numbers as natural, whole, integer, rational, irrational, or real Extended Classify numbers as natural or whole | 3 | 0-1 | 0-2 | 0-2 | 0 | 1-3 | | Gr8 Computation | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 8.1.3 Students will compute fluently and accurately using appropriate strategies and tools. | | | | | | | | MA 8.1.3.a General Compute accurately with rational numbers Extended Add and subtract decimals without regrouping | 4 | 0 | 0-1 | 0-2 | 0-2 | 1-3 | | MA 8.1.3.b General Evaluate expressions involving absolute value of integers Extended Determine the absolute value of a given situation | 4 | 0 | 0-1 | 0-2 | 0-2 | 1-3 | | MA 8.1.3.d General Select, apply, and explain the method of computation when problem solving using rational numbers Extended Select and apply method of computation (addition, subtraction, multiplication, division) when problem solving | 4 | 0 | 0 | 0-2 | 0-2 | 1-3 | | MA 8.1.3.e General Solve problems involving ratios and proportions Extended Solve problems involving ratios | 4 | 0 | 0 | 0-3 | 0-2 | 1-3 | | Gr8 Estimation | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 8.1.4 Students will estimate and check reasonableness of answers | | | | | | | | using appropriate strategies and tools. | | | | | | | | MA 8.1.4.a General Use estimation methods to check the reasonableness of solutions for problems involving rational numbers Extended Apply estimation to the nearest 10 on situations (story problems) involving addition and subtraction | 4 | 0 | 0 | 0-2 | 0-3 | 1-3 | | GEOMETRIC/MEASUREMENT | CONCF | PTS | | | | | |---|--------------------------------|---------|---------|---------|---------|----------------| | Gr8 Characteristics | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 8.2.1 Students will describe, compare, and contrast characteristics, properties, and relationships of geometric shapes and objects. | | | | | | | | MA 8.2.1.c General Identify geometric properties of parallel lines cut by a transversal and related angles Extended Identify geometric properties of parallel lines cut by a perpendicular transversal that creates right angles | 4 | 0-1 | 0-2 | 0-3 | 0-1 | 1-3 | | MA 8.2.1.d General Identify pairs of angles Extended Identify pairs of right angles | 4 | 0-1 | 0-2 | 0-3 | 0-1 | 1-3 | | MA 8.2.1.e General Examine the relationships of the interior angles to a triangle Extended Match congruent triangles based on interior angles | 3 | 0 | 0-2 | 0-2 | 0 | 1-3 | | Gr8 Coordinate Geometry | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 8.2.2 Students will specify locations and describe relationships using coordinate geometry. | | | | | | | | MA 8.2.2.a <u>General</u> Use coordinate geometry to represent and examine the properties of rectangles and squares using horizontal and vertical segments <u>Extended</u> Use coordinate geometry to determine the measurement of a side (rectangle, square) | 4 | 0 | 0-1 | 0-3 | 0-2 | 1-3 | | Gr8 Measurement | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 8.2.5 Students will apply appropriate procedures, tools, and formulas to determine measurements. | | | | | | | | MA 8.2.5.c General Apply the Pythagorean theorem to find missing lengths in right triangles and to solve problems Extended Find the missing length and/or height in a right triangle | 4 | 0 | 0-1 | 0-2 | 0-2 | 1-3 | | MA 8.2.5.d General Use scale factors to find missing lengths in similar shapes Extended Match similar geometric shapes represented in different scales | 3 | 0 | 0-3 | 0-3 | 0 | 1-3 | | ALGEBRAIC CONCEP | | | | | | | | Gr8 Relationships | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | | | | | | | | | MA 8.3.1 Students will represent and analyze relationships using | | 2 | | | | | |--|--------------------------------|---------|---------|---------|---------|----------------| | algebraic symbols. | | | | | | | | MA 8.3.1.b <u>General</u> Describe relationships using algebraic expressions, equations, and inequalities <u>Extended</u> Identify relationships using algebraic expressions | 3 | 0 | 0-2 | 0-3 | 0 | 1-3 | | Gr8 Modeling in Context | Highest
Level DOK
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 8.3.2 Students will create, use, and interpret models of quantitative relationships. | | | | | | | | MA 8.3.2.a General Model contextualized problems using various representations Extended Recognize addition and subtraction number sentences using various representations | 3 | 0-1 | 0-1 | 0-3 | 0 | 1-3 | | Gr8 Procedures | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 8.3.3 Students will apply properties to solve equations and inequalities. | | | | | | | | MA 8.3.3.b General Evaluate numerical expressions containing whole number exponents Extended Identify representations of numbers squared | 3 | 0 | 0-2 | 0-2 | 0 | 1-3 | | MA 8.3.3.c General Solve multi-step equations involving rational numbers Extended Solve one-step equations involving addition, subtraction, and multiplication | 4 | 0 | 0-1 | 0-3 | 0-1 | 1-3 | | MA 8.3.3.d General Solve two-step inequalities involving rational numbers Extended Identify values that make inequalities true | 4 | 0 | 0-1 | 0-3 | 0-2 | 1-3 | | DATA ANALYSIS/PROBABILITY | CONCE | PTS | | | | | | Gr8 Display and Analysis | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 8.4.1 Students will formulate questions that can be addressed with data, and then organize, display, and analyze the relevant data to answer their questions. | | | | | | | | MA 8.4.1.b General Compare characteristics between sets of data or within a given set of data Extended Compare characteristics in a set of data | 4 | 0 | 0-2 | 0-3 | 0-2 | 1-3 | | MA 8.4.1.d <u>General</u> Select the most appropriate unit of central tendency for sets of data <u>Extended</u> Find the median for a set of data | 4 | 0 | 0-1 | 0-2 | 0-2 | 1-3 | | MA 8.4.1.e General Identify misrepresentation and misinterpretation of data represented in circle graphs and box plots Extended Recognize accurate representation of data in a circle graph | 4 | 0 | 0 | 0-3 | 0-2 | 1-3 | |---|--------------------------------|---------|---------|---------|---------|----------------| | Gr8 Probability | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 8.4.3 Students will apply and interpret basic concepts of probability. | | | | | | | | MA 8.4.3.a <u>General</u> Identify complementary events and calculate their probabilities <u>Extended</u> <u>Determine complementary events</u> | 3 | 0 | 0-1 | 0-3 | 0 | 1-3 | | MA 8.4.3.b General Compute probabilities for independent compound events Extended Determine the probability for an independent event | 4 | 0 | 0-1 | 0-2 | 0-2 | 1-3 | | Nebraska State Accountability - Alternate Assessment o | of Mathe | ematics | (NeSA | -AAM) | Tables | of | |---|--------------------------------|---------|---------|---------|---------|----------------| | Specification | | | | | | | | Grade 11 NUMBER SENSE | | | | | | | | NOIVIBER SEINSE | | | | | | | | Gr11 Computation | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 12.1.3 Students will compute fluently and accurately using appropriate strategies and tools. | | | | 21 | | | | MA 12.1.3.a General Compute accurately with real numbers Extended Add and subtract two-digit by two-digit numbers with regrouping | 4 | 0 | 0-1 | 0-2 | 0-2 | 1-3 | | MA 12.1.3.b General Simplify exponential expressions Extended Recognize expanded forms of exponents (powers) | 3 | 0-1 | 0-2 | 0-3 | 0 | 1-3 | | Gr11 Estimation | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 12.1.4 Students will estimate and check reasonableness of answers using appropriate strategies and tools. | | | | | | | | MA 12.1.4.a General Use estimation methods to check the reasonableness of real number computations and decide if the problem calls for an approximation or an exact number Extended Apply
estimation to the nearest 10 on situations (story problems) involving addition, subtraction, and multiplication | 4 | 0 | 0 | 0-2 | 0-2 | 1-3 | | GEOMETRIC/MEASUREMENT | CONCE | PTS | | | | | | Gr11 Characteristics | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 12.2.1 Students will analyze characteristics, properties, and relationships among geometric shapes and objects. | | | | | | | | MA 12.2.1.d General Apply geometric properties to solve problems Extended Apply the geometric property, length times width, to find the area of a rectangle | 4 | 0 | 0-1 | 0-2 | 0-2 | 1-3 | | MA 12.2.1.e <u>General</u> Identify and apply right triangle relationships <u>Extended</u> Identify a right triangle | 3 | 0-1 | 0-1 | 0-3 | 0 | 1-3 | | Gr11 Coordinate Geometry | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 12.2.2 Students will use coordinate geometry to analyze and describe relationships in the coordinate plane. | | | | | | | |---|--------------------------------|---------|---------|---------|---------|----------------| | MA 12.2.2.a General Use coordinate geometry to analyze geometric situations Extended Determine the coordinates for a point on a 7 x 7 or larger grid | 3 | 0 | 0-1 | 0-3 | 0 | 1-3 | | MA 12.2.2.d General Prove special types of triangles and quadrilaterals Extended Identify the properties of equilateral triangles | 4 | 0-1 | 0-2 | 0-3 | 0-1 | 1-3 | | Gr11 Spatial Modeling | Highest
Stage DOK
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 12.2.4 Students will use visualization, spatial reasoning, and geometric modeling to solve problems. | | | | | | | | MA 12.2.4.b General Use geometric models to visualize, describe, and solve problems Extended Use geometric models to solve problems | 4 | 0 | 0-1 | 0-3 | 0-1 | 1-3 | | Gr11 Measurement | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 12.2.5 Students will apply the units, systems, and formulas to solve problems. | | | | | | | | MA 12.2.5.c General Convert between various units of area and volume, such as square feet to square yards Extended Find the missing length and/or height in a right triangle | 4 | 0 | 0-1 | 0-2 | 0-2 | 1-3 | | MA 12.2.5.d General Convert equivalent rates Extended Convert equivalent rates using money | 4 | 0 | 0-1 | 0-3 | 0-2 | 1-3 | | ALGEBRAIC CONCEP | TS | | | | | | | Gr11 Relationships | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Totals | | MA 12.3.1 Students will generalize, represent, and analyze relationships using algebraic symbols. | | | | | | | | MA 12.3.1.a General Represent, interpret, and analyze functions with graphs, tables, and algebraic notation, and convert among these representations Extended Interpret values of a function in a table | 4 | 0 | 0-1 | 0-2 | 0-2 | 1-3 | | MA 12.3.1.c <u>General</u> Identify the slope and intercepts of a linear relationship from an equation or graph <u>Extended</u> Identify a linear relationship from a graph | 4 | 0 | 0-1 | 0-3 | 0-2 | 1-3 | | MA 12.3.1.d General Identify characteristics of linear and non-linear functions Extended Compare linear and non-linear segments and graphs | 4 | 0-1 | 0-1 | 0-3 | 0-2 | 1-3 | | ********* | | 3 | | I · | | | |---|----------------------|---------|-----------|---------|---------|------------| | MA 12.3.1.f General Compare and analyze the rate of change by using ordered pairs, tables, | | | | | | | | graphs, and equations | 4 | 0 | 0-1 | 0-3 | 0-2 | 1-3 | | Extended Analyze the effect of the rate of change in a table or graph | | 576 | 10.7017.0 | 1.71.71 | | 707 | | Extended Analyze the effect of the rate of thange in a table or graph | | | | | | | | Gr11 Modeling in Context | Highest | | | | | | | 9 | DOK Stage | | | | | Item | | | Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Totals | | | | | | | | 0.000.0000 | | MA 12.3.2 Students will model and analyze quantitative relationships. | | | | | | | | | | | | | | | | MA 12.3.2.b | _ | | | | | | | General Represent a variety of quantitative relationships using linear equations | | | | | | | | and one variable inequalities | 4 | 0 | 0 | 0-3 | 0-3 | 1-3 | | Extended Solve the quantitative relationship of one variable inequalities | 4 | U | " | 0-3 | 0-3 | 1-3 | | using addition and subtraction | | | | | | | | | / CONCE | DTC | | | | | | DATA ANALYSIS/PROBABILITY | | P13 | | _ | | | | Gr11 Display and Analysis | Highest
DOK Stage | | | | | | | | Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item | | | resteu | | | | | Totals | | | | | | | | | | MA 12.4.1 Students will formulate a question and design a survey or an | | | l | | | | | experiment in which data is collected and displayed in a variety of | | | | | | | | formats, then select and use appropriate statistical methods to analyze | | | | | | | | the data. | | | | | | | | MA 12.4.1.d | | | | | | | | General Describe the shape and determine the center, spread, and outliers of a | 4 | 0 | 0 | 0-3 | 0-3 | 1-3 | | data set <u>Extended</u> | 4 | U | U U | 0-3 | 0-3 | 1-3 | | Determine the range of a data set | | | | | | | | Gr11 Probability | Highest | | | | | | | | DOK Stage | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item | | | Tested | Stage 1 | Juage 2 | Juage 3 | Stage 4 | Totals | | MA 12.4.3 Students will apply and interpret concepts of probability. | | | | | | | | | | | | | | | | MA 12.4.3.b | | | | | | | | General Identify dependent and independent events and calculate their | | | 0.1 | | 0.0 | 1.3 | | probabilities | 4 | 0 | 0-1 | 0-3 | 0-3 | 1-3 | | Extended Differentiate between a dependent and independent event | | | | | | | | MA 12.4.3.c | | | | | | | | General Use the appropriate counting techniques to determine the probability of | | | | | | | | an event | 4 | 0 | 0-1 | 0-3 | 0-3 | 1-3 | | Extended Use the appropriate counting principle to determine the combinations | | | | | | | | for an event | | | | | | | | MA 12.4.3.d | | | | | | | | General Analyze events to determine if they are mutually exclusive | 4 | 0 | 0-1 | 0-3 | 0-3 | 1-3 | | Extended Determine if two events are mutually exclusive | " | | | 537.51 | | | | | 1 | | | 1 | l l | l . | # **Appendix C: NeSA-AAS Test Blueprint** | Nebraska State Accountability - Alter | | | nt of S | cience | (NeSA- | AAS) | |---|--------------------------------|---------|---------|---------|---------|---------------| | Tables of S | Specificat | tion | | | | | | Gra | ade 5 | | | | | | | Inquiry, The Nature of | Science, | and Te | chnolog | gy | | | | Grade 5 Abilities to do Scientific Inquiry | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Total | | SCE 5.1.1 General Students will plan and conduct investigations that lead to the development of explanations. Extended Students will conduct investigations that lead to a final product. | 4 | 0-1 | 0-1 | 2-5 | 1-4 | 4-7 | | SC 5.1.1.a Ask testable scientific questions | 4 | | | | | | | SC 5.1.1.b Plan and conduct investigations and identify factors that have the potential to impact an investigation | 4 | | | | | | | SC 5.1.1.c Select and use equipment correctly and accurately | 4 | | | | | | | SC 5.1.1.d Make relevant observations and measurements | 4 | | | | | | | SC 5.1.1.e Collect and organize data | 4 | | | | | | | SC 5.1.1.f Develop a reasonable explanation based on collected data | 4 | | | | | | | SC 5.1.1.g Share information, procedures, and results with peers and/or adults | 4 | | | | | | | SC 5.1.1.h Provide feedback on scientific investigations | 4 | | | | | | | SC 5.1.1.i Use appropriate mathematics in all aspects of scientific inquiry | 4 | | | | | | | Grade 5 Nature of Science | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Total | | SCE 5.1.2 General Students will describe how scientists go about their work. Extended Students will observe how scientists go about their work. | Assessed at the local level | | | | | | | SC 5.1.2.a Recognize that scientific explanations are based on evidence and scientific knowledge | | | | | | | | SC 5.1.2.b Recognize that new discoveries are always being made which impact scientific knowledge | | | | | | | | SC 5.1.2.c Recognize many different people study science | | | | | | | | Grade 5 Technology | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Total | | | | | |---|--------------------------------|---------|---------|---------|---------|---------------|--|--|--|--| | SC 5.1.3 General Students will solve a simple design problem. Extended Students will solve a simple problem. | Assessed at the local level | | | | | | | | | | | SC 5.1.3.a Identify a simple problem |] | | | | | | | | | | | SC 5.1.3.b Propose a solution to a simple problem | | | | | | | | | | | | SC 5.1.3.c Implement the proposed solution | | | | | | | | | | | | SC 5.1.3.d Evaluate the implementation | 1 | | | | | | | | | | | SC 5.1.3.e Communicate the problem, design, and solution | | | | | | | | | | | | PHYSICA | L SCIENC | Œ | | | | | | | | | | Grade 5 Matter | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Total | | | | | | SCE 5.2.1 General Students will explore and describe the physical properties of matter and its
changes. Extended Students will explore and recognize the physical properties of matter and its changes. | 4 | 0-1 | 0-1 | 1-4 | 0-3 | 2-4 | | | | | | SC 5.2.1.a Identify mixtures and pure substances | 4 | | | | | | | | | | | SC 5.2.1.b Identify physical properties of matter (color, odor, elasticity, weight, volume) | 4 | | | | | | | | | | | SC 5.2.1.c Use appropriate metric measurements to describe physical properties | 4 | | | | | | | | | | | SC 5.2.1.d Identify state change caused by heating and cooling solids, liquids, and gasses | 4 | | | | | | | | | | | Grade 5 Force and Motion | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Total | | | | | | SCE 5.2.2 General Students will identify the influence of forces on motion. Extended Students will identify the influence of forces on motion. | 4 | 0-1 | 0-1 | 1-3 | 0-2 | 2-3 | | | | | | SC 5.2.2.a Describe motion by tracing and measuring an object's position over a period of time (speed) | 4 | | | | | | | | | | | SC 5.2.2.b Describe changes in motion due to outside forces (push, pull, gravity) | 4 | | | | | | | | | | | SC 5.2.2 c Describe magnetic behavior in terms of attraction and repulsion | 4 | | | | | | | | | | | Grade 5 Energy | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Total | |---|--------------------------------|---------|---------|---------|---------|---------------| | SCE 5.2.3 General Students will observe and identify signs of energy transfer. Extended Students will observe and identify signs of energy transfer. | 4 | 0-1 | 0-1 | 1-3 | 0-2 | 2-3 | | SC 5.2.3.a Recognize that sound is produced from vibrating objects; the sound can be changed by changing the vibration | 4 | | | | | | | SC 5.2.3.b Recognize that light travels in a straight line and can be reflected by an object (mirror) | 4 | | | | | | | SC 5.2.3.c Recognize that light can travel through certain materials and not others (transparent, translucent, opaque) | 4 | | | | | | | SC 5.2.3.d Identify ways to generate heat (friction, burning, incandescent light bulb) | 4 | | | | | | | SC 5.2.3.e Identify materials that act as thermal conductors or insulators | 4 | | | | | | | SC 5.2.3.f Recognize that the transfer of electricity in an electrical circuit requires a closed loop | 4 | | | | | | | LIFE S | CIENCE | | | | | | | Grade 5 Life Science | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Total | | SCE 5.3.1 General Students will investigate and compare the characteristics of living things. Extended Students will recognize that living things grow. | 4 | 0-1 | 0-1 | 1-3 | 0-2 | 2-3 | | SC 5.3.1.a Compare and contrast characteristics of living and nonliving things | 4 | | | | | | | SC 5.3.1.b Identify how parts of plants and animals function to meet basic needs (e.g., leg of an insect helps an insect move, root of a plant helps the plant obtain water) | 4 | | | | | | | Grade 5 Heredity | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Total | | SCE 5.3.2 General Students will identify variations of inherited characteristics and life cycles. Extended Students will observe inherited characteristics and life cycles. | 4 | 0-1 | 0-2 | 1-3 | 0-2 | 1-3 | | SC 5.3.2.a Identify inherited characteristics of plants and animals | 4 | | | | | | | | | | | | | | | 93
20 | | 2 2 | | | | 5 2 | |--|--------------------------------|---------|---------|---------|---------|---------------| | SCE 5.3.3 General Students will describe relationships within an ecosystem. Extended Students will recognize relationships within an ecosystem. | 4 | 0-1 | 0-2 | 0-3 | 0-2 | 2-3 | | SC 5.3.3.a Diagram and explain a simple food chain beginning with the Sun | 4 | | | | | | | SC 5.3.3.b Identify the role of producers, consumers, and decomposers in an ecosystem | 4 | | | | | | | SC 5.3.3.c Recognize the living and nonliving factors that impact the survival of organisms in an ecosystem | 4 | | | | | | | SC 5.3.3.d Recognize all organisms cause changes, some beneficial and some detrimental, in the environment where they live | 4 | | | | | | | SCE 5.3.4 General Students will describe changes in organisms over time. Extended Students will identify changes in organisms over time. over time. | 4 | 0-1 | 0-1 | 1-2 | 0-1 | 1-2 | | SC 5.3.4.a Describe adaptations made by plants or animals to survive environmental changes | 4 | | | | | | | EARTH AND S | SPACE SC | IENCE | | | | | | Grade 5 Earth in Space | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Total | | SCE 5.4.1 General Students will observe and describe characteristics, patterns, and changes in the sky. Extended Students will observe and recognize changes in the sky. | | 0-1 | 0-1 | 1-3 | 0-2 | 1-3 | | SC 5.4.1.a Recognize that the observed shape of the Moon changes from day to day during a one month period | 4 | | | | | | | SC 5.4.1.b Recognize the motion of objects in the sky (the Sun, the Moon, stars) change over time in recognizable patterns | 4 | | | | | | | Grade 5 Earth Structures and Processes | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Total | |---|--------------------------------|---------|---------|---------|---------|---------------| | SCE 5.4.2 General Students will observe and describe Earth's materials, structure, and processes. Extended Students will observe and recognize Earth's materials and processes. | 4 | 0-1 | 0-2 | 1-4 | 0-2 | 2-4 | | SC 5.4.2.a Describe the characteristics of rocks, minerals, soil, water, and the atmosphere | 4 | | | | | | | SC 5.4.2.b Identify weathering, erosion, and deposition as processes that build up or break down Earth's surface | 4 | | | | | | | SC 5.4.2.c Identify how Earth materials are used (fuels, building materials, sustaining plant life) | 4 | | | | | | | Grade 5 Energy in Earth's Systems | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Total | | SCE 5.4.3 General Students will observe and describe the effects of energy changes on Earth. Extended Students will observe and recognize the effects of energy changes on Earth. | 4 | 0-1 | 0-1 | 1-3 | 0-2 | 2-3 | | SC 5.4.3.a Describe the Sun's warming effect on the land and water | 4 | | | | | | | SC 5.4.3.b Observe, measure, and record changes in weather (temperature, wind direction and speed, precipitation) | 4 | | | | | | | SC 5.4.3.c Recognize the difference between weather, climate, and seasons | 4 | | | | | | | Grade 5 Earth's History | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Total | | SCE 5.4.4 General Students will describe changes in Earth. Extended Students will recognize changes occur on Earth. | 4 | 0-1 | 0-1 | 1-3 | 0-2 | 1-3 | | SC 5.4.4.a Describe how slow processes (erosion,
weathering, deposition) and rapid processes (landslides,
volcanic eruptions, earthquakes) change Earth's surface | 4 | | | | | | #### Nebraska State Accountability - Alternate Assessment of Science (NeSA-AAS) **Tables of Specification** Grade 8 Inquiry, The Nature of Science, and Technology Highest Item Grade 8 Abilities to do Scientific Inquiry DOK Stage Stage 1 Stage 2 Stage 3 Stage 4 Total Tested General Students will design and conduct investigations that will lead to descriptions of relationships between evidence and 0-1 0-1 2-5 1-4 4-7 Extended Students will conduct investigations that lead to a final product. SC 8.1.1.a Formulate testable questions that lead to 4 predictions and scientific investigations SC 8.1.1.b Design and conduct logical and sequential 4 investigations including repeated trials SC 8.1.1.c Determine controls and use dependent 4 (responding) and independent (manipulated) variables SC 8.1.1.d Select and use equipment appropriate to the 4 investigation, demonstrate correct techniques SC 8.1.1.e Make qualitative and quantitative observations 4 SC 8.1.1.f Record and represent data appropriately and 4 review for quality, accuracy, and relevancy SC 8.1.1.g Evaluate predictions, draw logical inferences based on observed patterns/relationships, and account 4 for non-relevant information SC 8.1.1.h Share information, procedures, results, and 4 conclusions with appropriate audiences SC 8.1.1.i Analyze and provide appropriate critique of 4 scientific investigations SC 8.1.1.j Use appropriate mathematics in all aspects of 4 scientific inquiry Highest Item **Grade 8 Nature of Science** Stage 1 Stage 2 Stage 4 DOK Stage Stage 3 Total Tested SCE 8.1.2 General Students will apply the nature of science to their own Assessed at the local level Extended Students will describe how scientists go about their work. | SC 8.1.2.a Recognize science is an ongoing process and the scientific community accepts and uses explanations until they encounter new experimental evidence not matching existing explanations | | | | | | | |--|--------------------------------|---------|------------|------------|---------|---------------| | SC 8.1.2.b Describe how scientific discoveries influence and change society | | | | | | | | SC 8.1.2.c Recognize scientists from various cultures have made many contributions to explain the natural world | | | | | | | | Grade 8 Technology |
Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Total | | SCE 8.1.3 General Students will solve a design problem which involves one or two science concepts. Extended Students will solve a problem using simple machines (inclined planes and wheels). | | Asse | ssed at ti | he local l | evel | | | SC 8.1.3.a Identify problems for technical design | 1 | | | | | | | SC 8.1.3.b Design a solution or product | 1 | | | | | | | SC 8.1.3.c Implement the proposed design | 1 | | | | | | | SC 8.1.3.d Evaluate completed technological designs or products | | | | | | | | SC 8.1.3.e Communicate the process of technical design | 1 | | | | | | | SC 8.1.3.f Distinguish between scientific inquiry (asking questions about the natural world) and technological design (using science to solve practical problems) | | | | | | | | SC 8.1.3.g Describe how science and technology are reciprocal | | | | | | | | SC 8.1.3.h Recognize that solutions have intended and unintended consequences | | | | | | | | SC 8.1.3.i Compare and contrast the reporting of scientific knowledge and the reporting of technological knowledge | | | | | | | | PHYSIC | AL SCIEN | CE | | | | | | Grade 8 Matter | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Total | | SCE 8.2.1 General Students will identify and describe the particulate nature of matter including physical and chemical interactions. Extended Students will explore and identify the physical properties and the physical changes of matter. | | 0-1 | 0-1 | 2-4 | 0-3 | 2-4 | | SC 8.2.1.a Compare and contrast elements, compounds, and mixtures | 4 | | | | | | | SC 8.2.1.b Describe physical and chemical properties of matter | 4 | | | | | | | SC 8.2.1.c Recognize most substances can exist as a solid, liquid, or gas depending on temperature | 4 | | | | | | |---|--------------------------------|---------|---------|---------|---------|---------------| | SC 8.2.1.d Compare and contrast solids, liquids, and gasses based on properties of these states of matter | 4 | | | | | | | SC 8.2.1.e Distinguish between physical and chemical changes (phase changes, dissolving, burning, rusting) | 4 | | | | | | | SC 8.2.1.f Recognize conservation of matter in physical and chemical changes | 4 | | | | | | | SC 8.2.1.g Classify substances into similar groups based on physical properties | 4 | | | | | | | Grade 8 Force and Motion | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Total | | SCE 8.2.2 General Students will investigate and describe forces and motion. Extended Students will explore and recognize forces and motion. | | 0-1 | 0-1 | 1-3 | 0-2 | 2-3 | | SC 8.2.2.a Describe motion of an object by its position and velocity | 4 | | | | | | | SC 8.2.2.b Recognize an object that is not being subjected to a force will continue to move at a constant speed in a straight line or stay at rest (Newton's 1st law) | 4 | | | | | | | SC 8.2.2.c Compare the motion of objects related to the effects of balanced and unbalanced forces | 4 | | | | | | | SC 8.2.2.d Recognize that everything on or around Earth is pulled towards Earth's center by gravitational force | 4 | | | | | | | Grade 8 Energy | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Total | | SCE 8.2.3 General Students will identify and describe how energy systems and matter interact. Extended Students will identify and describe how energy systems and matter interact. | | 0-1 | 0-1 | 1-3 | 0-2 | 2-3 | | SC 8.2.3.a Recognize that vibrations set up wave-like disturbances that spread away from the source (sound, seismic, water waves) | 4 | | | | | | | SC 8.2.3.b Identify that waves move at different speeds in different materials | 4 | | | | | | | SC 8.2.3.c Recognize that light interacts with matter by transmission (including refraction), absorption, or scattering (including reflection) | 4 | | | | | | | SC 8.2.3.d Recognize that to see an object, light from the surface of the object must enter the eye; the color seen depends on the properties of the surface and the color of the available light sources | 4 | | | | | | | SC 8.2.3.e Recognize that heat moves from warmer | 4 | | | | | | |--|--------------------------------|---------|---------|-------------|-----------------|---------------| | objects to cooler objects until both reach the same
temperature | 4 | | | | | | | SC 8.2.3.f Describe transfer of energy from electrical and | | | | | | | | magnetic sources to different energy forms (heat, light, | 4 | | | | | | | sound, chemical) | | | | | | | | SC 8.2.3.g Recognize all energy is neither created nor | 4 | | | | | | | destroyed | 4 | | | | | | | LIFE | SCIENCE | | | | | | | Grade 8 Structure and Function of Living Systems | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Total | | SCE 8.3.1 | | | | | | | | General Students will investigate and describe the structure and | | | | 10100100000 | 4.14.10245.0274 | Western as | | function of living organisms. | | 0-1 | 0-2 | 1-3 | 0-2 | 2-3 | | Extended Students will explore and identify the structure | | | | | | | | and function of living things. | | | | | | | | SC 8.3.1.a Recognize the levels of organization in living | | | | | | | | organisms (cells, tissues, organs, organ systems, | 4 | | | | | | | organisms) | | | | | | | | SC 8.3.1.b Recognize that all organisms are composed of | | | | | | | | one or many cells; that these cells must grow, divide, and | 4 | | | | | | | use energy; and that all cells function similarly | | | | | | | | SC 8.3.1.c Recognize specialized cells perform specialized | 4 | | | | | | | functions in multicellular organisms | | | | | | | | SC 8.3.1.d Identify the organs and functions of the major | | | | | | | | systems of the human body and describe ways that these systems interact with each other | 4 | | | | | | | The state of s | | | | | | | | SC 8.3.1.e Describe how plants and animals respond to environmental stimuli | 4 | | | | | | | | Highest | | | | | Item | | Grade 8 Heredity | DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Total | | SCE 8.3.2 | | | | | | | | General Students will investigate and describe the relationship | | | | | | | | between reproduction and heredity. | | 0-1 | 0-1 | 1-3 | 0-2 | 1-3 | | Extended Students will explore and identify the | | | | | | | | relationship between reproduction and heredity. | | | | | | | | SC 8.3.2.a Recognize that hereditary information is | _ | | | | | | | contained in genes within the chromosomes of each cell | 4 | | | | | | | SC 8.3.2.b Compare and contrast sexual and asexual reproduction | 4 | | | | | | | | Highest | | | | | Item | | Grade 8 Flow of Matter and Energy in Ecosystems | DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Total | | SCE 8.3.3 General Students will describe populations and ecosystems. Extended Students will recognize relationships within an ecosystem. | | 0-1 | 0-1 | 0-3 | 0-2 | 2-3 | |--|--------------------------------|---------|---------|---------|---------|---------------| | SC 8.3.3.a Diagram and explain the flow of energy through a simple food web | 4 | | | | | | | SC 8.3.3.b Compare the roles of producers, consumers, and decomposers in an ecosystem | 4 | | | | | | | SC 8.3.3.c Recognize that producers transform sunlight into chemical energy through photosynthesis | 4 | | | | | | | SC 8.3.3.d Determine the biotic and abiotic factors that impact the number of organisms an ecosystem can support | 4 | | | | | | | SC 8.3.3.e Recognize a population is all the individuals of a
species at a given place and time | 4 | | | | | | | SC 8.3.3.f Identify symbiotic relationships among organisms | 4 | | | | | | | SC 8.3.3.g Identify positive and negative effects of natural and human activity on an ecosystem | 4 | | | | | | | Grade 8 Biodiversity | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Total | | SCE 8.3.4 General Students will identify characteristics of organisms that help them survive. Extended Students will identify survival characteristics or organisms. | | 0-1 | 0-1 | 1-2 | 0-1 | 1-2 | | SC 8.3.4.a Describe how an inherited characteristic enables an organism to improve its survival rate | 4 | | | | | | | SC 8.3.4.b Recognize the extinction of a species is caused by the inability to adapt to an environmental change | 4 | | | | | | | SC 8.3.4.c Use anatomical features of an organism to infer similarities among other organisms | 4 | | | | | | | EARTH AND | SPACE S | CIENCE | | | | | | Grade 8 Earth in Space | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Total | | SCE 8.4.1 General Students will investigate and describe Earth and the solar system. Extended Students will investigate Earth and the solar system. | | 0-1 | 0-1 | 1-2 | 0-2 | 1-2 | | SC 8.4.1.a Describe the components of the solar system (the Sun, planets, moons, asteroids, comets) | 4 | | | | | | | SC 8.4.1.b Describe the relationship between motion of objects in the solar system and the phenomena of day, year, eclipses, phases of the Moon and seasons | 4 | | | | | | | SC 8.4.1.c Describe the effects of gravity on Earth (tides) and the effect of gravity on objects in the solar system | 4 | | | | | | |--|--------------------------------|---------|---------|---------|---------|---------------| | Grade 8 Earth Structures and Processes | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Total | | SCE 8.4.2 General Students will investigate and describe Earth's structure, systems, and processes. Extended Students will investigate and identify Earth's structure, systems, and processes. | | 0-1 | 0-2 | 1-4 | 0-2 | 2-4 | | SC 8.4.2.a Describe the layers of Earth (core, mantle, crust, atmosphere) | 4 | | | | | | | SC 8.4.2.b Describe the physical composition of soil | 4 | | | | | | | SC 8.4.2.c Describe the mixture of gasses in Earth's atmosphere and how the atmosphere's properties change at different elevations | 4 | | | | | | | SC 8.4.2.d Describe evidence of Earth's magnetic field | 4 | | | | | | | SC 8.4.2.e Compare and contrast constructive and destructive forces (deposition, erosion, weathering, plate motion causing uplift, volcanoes, earthquakes) that impact Earth's surface | 4 | | | | | | | SC 8.4.2.f Describe the rock cycle | 4 | | | | | | | SC 8.4.2.g Describe the water cycle (evaporation, condensation, precipitation) | 4 | | | | | | | SC 8.4.2.h Classify Earth materials as renewable or nonrenewable | 4 | | | | | | | Grade 8 Energy in Earth's Systems | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Total | | SCE 8.4.3 General Students will investigate and describe energy in Earth's systems. Extended Students will identify energy in Earth's systems. | | 0-1 | 0-1 | 1-3 | 0-2 | 2-3 | | SC 8.4.3.a Describe how energy from the Sun influences the atmosphere and provides energy for plant growth | 4 | | | | | | | SC 8.4.3.b Identify factors that influence daily and seasonal changes on Earth (tilt of the Earth, humidity, air pressure, air masses) | 4 | | | | | | | SC 8.4.3.c Describe atmospheric movements that influence weather and climate (air masses, jet stream) | 4 | | | | | | | Grade 8 Earth's History | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Total | | SCE 8.4.4 General Students will use evidence to draw conclusions about changes in Earth. Extended Students will recognize that the surface of Earth changes today, in similar ways as in the past. | | 0-1 | 0-1 | 1-3 | 0-2 | 1-3 | |--|---|-----|-----|-----|-----|-----| | SC 8.4.4.a Recognize that Earth processes we see today are similar to those that occurred in the past (uniformity of processes) | 4 | | | | | | | SC 8.4.4.b Describe how environmental conditions have changed through use of the fossil record | 4 | | | | | | # Nebraska State Accountability - Alternate Assessment of Science (NeSA-AAS) Tables of Specification #### Grade 11 #### Inquiry, The Nature of Science, and Technology | Grade 11 Abilities to do Scientific Inquiry | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Total | |--|--------------------------------|---------|---------|---------|---------|---------------| | SCE 12.1.1 General Students will design and conduct investigations that lead to the use of logic and evidence in the formulation of scientific explanations and models. Extended Students will conduct an investigation that leads to an answer. | | 0-1 | 0-1 | 2-5 | 2-4 | 4-7 | | SC 12.1.1.a Formulate a testable hypothesis supported by prior knowledge to guide an investigation | 4 | | | | | | | SC 12.1.1.b Design and conduct logical and sequential
scientific investigations with repeated trials and apply
findings to new investigations | 4 | | | | | | | SC 12.1.1.c Identify and manage variables and constraints | 4 | | | | | | | SC 12.1.1.d Select and use lab equipment and technology appropriately and accurately | 4 | | | | | | | SC 12.1.1.e Use tools and technology to make detailed qualitative and quantitative observations | 4 | | | | | | | SC 12.1.1.f Represent and review collected data in a
systematic, accurate, and objective manner | 4 | | | | | | | SC 12.1.1.g Analyze and interpret data, synthesize ideas, formulate and evaluate models, and clarify concepts and explanations | 4 | | | | | | | SC 12.1.1.h Use results to verify or refute a hypothesis | 4 | | | | | | | SC 12.1.1.i Propose and/or evaluate possible revisions and alternate explanations | 4 | | | | | | | SC 12.1.1.j Share information, procedures, results, conclusions, and defend findings to a scientific community (peers, science fair audience, policy makers) | 4 | | | | | | | SC 12.1.1.k Evaluate scientific investigations and offer revisions and new ideas as appropriate | 4 | | | | | | | SC 12.1.1.1 Use appropriate mathematics in all aspects of scientific inquiry | 4 | | | | | | | Grade 11 Nature of Science | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Total | |---|--------------------------------|---------|------------|-------------|---------|---------------| | SCE 12.1.2 General Students will apply the nature of scientific knowledge to their own investigations and in the evaluation of scientific explanations. Extended Students will apply the nature of science investigations to the world in which they live. | Assessed at the local level | | | | | | | SC 12.1.2.a Recognize that scientific explanations must be open to questions, possible modifications, and must be based upon historical and current scientific knowledge | | | | | | | | SC 12.1.2.b Describe how society influences the work of
scientists and how science, technology, and current
scientific discoveries influence and change society | | | | | | | | SC 12.1.2.c Recognize that the work of science results in incremental advances, almost always building on prior knowledge, in our understanding of the world SC 12.1.2.d Research and describe the difficulties experienced by scientific innovators who had to overcome commonly held beliefs of their times to reach conclusions that we now take for granted | | | | | | | | Grade 11 Technology | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Total | | SCE 12.1.3 General Students will solve a complex design problem. Extended Students will solve a design problem. | | Asse | essed at t | he local le | evel | | | SC 12.1.3.a Propose designs and choose between alternative solutions of a problem | | | | | | | | SC 12.1.3.b Assess the limits of a technological design | | | | | | | | SC 12.1.3.c Implement the selected solution | | | | | | | | SC 12.1.3.d Evaluate the solution and its consequences | | | | | | | | SC 12.1.3.e Communicate the problem, process, and solution | | | | | | | | SC 12.1.3.f Compare and contrast the reasons for the pursuit of science and the pursuit of technology | | | | | | | | SC 12.1.3.g Explain how science advances with the introduction of new technology | | | | | | | | SC 12.1.3.h Recognize creativity, imagination, and a good
knowledge base are all needed to advance the work of
science and engineering | | | | | | | | PHYS | ICAL SCIE | NCE | | | | | |---|--------------------------------|---------|---------|---------|---------|---------------| | Grade 11 Matter |
Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Total | | SCE 12.2.1 General Students will investigate and describe matter in terms of its structure, composition and conservation. Extended Students will identify changes that take place between states of matter. | | 0-1 | 0-1 | 2-4 | 0-3 | 2-4 | | SC 12.2.1.a Recognize bonding occurs when outer electrons are transferred (ionic) or shared (covalent) | 4 | | | | | | | SC 12.2.1.b Describe the energy transfer associated with phase changes between solids, liquids, and gasses | 4 | | | | | | | SC 12.2.1.c Describe the three normal states of matter
(solid, liquid, gas) in terms of energy, particle
arrangement, particle motion, and strength of bond
between molecules | 4 | | | | | | | SC 12.2.1.d Recognize a large number of chemical
reactions involve the transfer of either electrons
(oxidation/reduction) or hydrogen ions (acid/base)
between reacting ions, molecules, or atoms | 4 | | | | | | | SC 12.2.1.e Identify factors affecting rates of chemical reactions (temperature, particle size, surface area) | 4 | | | | | | | SC 12.2.1.f Recognize the charges and relative locations of subatomic particles (neutrons, protons, electrons) | 4 | | | | | | | SC 12.2.1.g Describe properties of atoms, ions, and isotopes | 4 | | | | | | | SC 12.2.1.h Describe the organization of the periodic table of elements with respect to patterns of physical and chemical properties | 4 | | | | | | | Grade 11 Force and Motion | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Total | | SCE 12.2.2 General Students will investigate and describe the nature of field forces and their interactions with matter. Extended Students will investigate and identify how forces interact with matter. | | 0-1 | 0-1 | 1-3 | 0-2 | 2-3 | | SC 12.2.2.a Describe motion with respect to displacement and acceleration | 4 | | | | | | | SC 12.2.2.b Describe how the law of inertia (Newton's 1st law) is evident in a real-world event | 4 | | | | | | | SC 12.2.2.c Make predictions based on relationships
among net force, mass, and acceleration (Newton's 2nd
law) | 4 | | | | | | | SC 12.2.2.d Recognize that all forces occur in equal and opposite pairs (Newton's 3rd law) | 4 | | | | | | | SC 12.2.e Describe how Newton's 3rd law of motion is | 4 | | | | | | |---|--------------------------------|---------|---------|---------|---------|---------------| | evident in a real-world event SC 12.2.2.f Describe gravity as a force that each mass exerts on another mass, which is proportional to the masses and the distance between them | 4 | | | | | | | SC 12.2.2.g Recognize that an attractive or repulsive
electric force exists between two charged particles and
that this force is proportional to the magnitude of the
charges and the distance between them | 4 | | | | | | | Grade 11 Energy | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Total | | SCE 12.2.3 General Students will describe and investigate energy systems relating to the conservation and interaction of energy and matter. Extended Students will investigate and recognize the effects of energy transfer. | | 0-1 | 0-1 | 1-3 | 0-2 | 2-3 | | SC 12.2.3.a Describe mechanical wave properties (speed, wavelength, frequency, amplitude) and how waves travel through a medium | 4 | | | | | | | SC 12.2.3.b. Recognize that the energy in waves can be changed into other forms of energy | 4 | | | | | | | SC 12.2.3.c Recognize that light can behave as a wave (diffraction and interference) | 4 | | | | | | | SC 12.2.3.d Distinguish between temperature (a measure of the average kinetic energy of atomic or molecular motion) and heat (the quantity of thermal energy that transfers due to a change in temperature) | 4 | | | | | | | SC 12.2.3.e Compare and contrast methods of heat transfer and the interaction of heat with matter via conduction, convection, and radiation | 4 | | | | | | | SC 12.2.3.f Recognize that the production of
electromagnetic waves is a result of changes in the
motion of charges or by a changing magnetic field | 4 | | | | | | | SC 12.2.3.g Compare and contrast segments of the electromagnetic spectrum (radio, micro, infrared, visible, ultraviolet, x-rays, gamma) based on frequency and wavelength | 4 | | | | | | | SC 12.2.3.h Recognize that nuclear reactions (fission, fusion, radioactive decay) convert a fraction of the mass of interacting particles into energy, and this amount of energy is much greater than the energy in chemical interactions | 4 | | | | | | | SC 12.2.3.i Interpret the law of conservation of energy to make predictions for the outcome of an event | 4 | | | | | | | SC 12.2.3.j Identify that all energy can be considered to be either kinetic, potential, or energy contained by a field (e.g. electromagnetic waves) | 4 | | | | | | | SC 12.2.3.k Identify endothermic and exothermic reactions | 4 | | | | | | | LIFE SCIENCE | | | | | | | |---|--------------------------------|---------|---------|---------|---------|---------------| | Grade 11 Structure and Function of Living Systems | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Total | | SCE 12.3.1 General Students will investigate and describe the chemical basis of the growth, development, and maintenance of cells. Extended Students will investigate and identify the factors needed for life and growth. | | 0-1 | 0-1 | 1-3 | 0-2 | 2-3 | | SC 12.3.1.a Identify the complex molecules
(carbohydrates, lipids, proteins, nucleic acids) that make
up living organisms | 4 | | | | | | | SC 12.3.1.b Identify the form and function of sub-cellular structures that regulate cellular activities | 4 | | o o | | | | | SC 12.3.1.c Describe the cellular functions of photosynthesis, respiration, cell division, protein synthesis, transport of materials, and energy capture/release | 4 | | | | | | | SC 12.3.1.d Describe how an organism senses changes in
its internal or external environment and responds to
ensure survival | 4 | | | | | | | Grade 11 Heredity | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Total | | SCE 12.3.2 General Students will describe the molecular basis of reproduction and heredity. Extended Students will investigate and identify features of living organisms that come from their parents. | | 0-1 | 0-1 | 1-3 | 0-2 | 1-3 | | SC 12.3.2.a Identify that information passed from parents to offspring is coded in DNA molecules | 4 | | | | | | | SC 12.3.2.b Describe the basic structure of DNA and its function in genetic inheritance | 4 | | | | | | | SC 12.3.2.c Recognize how mutations could help, harm, or have no effect on individual organisms | 4 | | | | | | | SC 12.3.2.d Describe that sexual reproduction results in a
largely predictable, variety of possible gene combinations
in the offspring of any two parents | 4 | | | | | | | Grade 11 Flow of Matter and Energy in Ecosystems | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Total | | SCE 12.3.3 General Students will describe, on a molecular level, the cycling of matter and the flow of energy between organisms and their environment. Extended Students will investigate and identify the cycling of matter between organisms and their environment. | | 0-1 | 0-1 | 1-3 | 0-2 | 2-3 | | SC 12.3.3.a Explain how the stability of an ecosystem is increased by biological diversity | 4 | | | | | | | SC 12.3.3.b Recognize that atoms and molecules cycle among living and nonliving components of the biosphere | 4 | | | | | | |--|--------------------------------|---------|---------|---------|---------|---------------| | SC 12.3.3.c Explain how distribution and abundance of different organisms in ecosystems are limited by the availability of matter and energy and the ability of the ecosystem to recycle materials | 4 | | | | | 5 | | SC 12.3.3.d Analyze factors which may influence environmental quality | 4 | | | | | | | Grade 11 Biodiversity | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Total | | SCE 12.3.4 General Students will describe the theory of biological evolution. Extended Students will explore and identify elements of evolution. | | 0-1 | 0-1 | 0-2 | 0-2 | 1-2 | | SC 12.3.4.a Identify different types of adaptations necessary for survival (morphological, physiological, behavioral) | 4 | | | | | | | SC 12.3.4.b Recognize that the concept of biological evolution is a theory which explains the consequence of the interactions of: (1) the potential for a species to increase its numbers, (2) the genetic variability of offspring due to mutation and recombination of genes, (3) a finite supply of the resources required for life, and (4) the ensuing selection by the environment of those offspring better able to survive and leave offspring | 4 | | | | | | | SC 12.3.4.c Explain how natural selection provides a
scientific explanation of the fossil record and the
molecular similarities among the diverse species of
living
organisms | 4 | | | | | | | SC 12.3.4.d Apply the theory of biological evolution to explain diversity of life over time | 4 | | | | | | | EARTH AN | ID SPACE | SCIENCI | E | | | | | Grade 11 Earth in Space | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Total | | SCE 12.4.1 General Students will investigate and describe the known universe. Extended Students will identify the difference between man-made and natural objects in space. | | 0-1 | 0-1 | 1-3 | 0-2 | 2-3 | | SC 12.4.1.a Describe the formation of the universe using the Big Bang Theory | 4 | | | | | | | SC 12.4.1.b Recognize that stars, like the Sun, transform matter into energy by nuclear reactions which leads to the formation of other elements | 4 | | | | | | | SC 12.4.1.c Describe stellar evolution | 4 | | | | | | | Grade 11 Earth Structures and Processes | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Total | |---|--------------------------------|---------|---------|---------|---------|---------------| | SCE 12.4.2 General Students will investigate the relationships among Earth's structure, systems, and processes. Extended Students will recognize that various processes cause changes on Earth. | | 0-1 | 0-1 | 1-4 | 0-2 | 2-4 | | SC 12.4.2.a Recognize how Earth materials move through geochemical cycles (carbon, nitrogen, oxygen) resulting in chemical and physical changes in matter | 4 | | | | | | | SC 12.4.2.b Describe how heat convection in the mantle
propels the plates comprising Earth's surface across the
face of the globe (plate tectonics) | 4 | | | | | | | SC 12.4.2.c Evaluate the impact of human activity and natural causes on Earth's resources (groundwater, rivers, land, fossil fuels) | 4 | | | | | | | Grade 11 Energy in Earth's Systems | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Total | | SCE 12.4.3 General Students will investigate and describe the relationships among the sources of energy and their efforts on Earth's systems. Extended Students will identify sources of energy in Earth's systems. | | 0-1 | 0-1 | 1-3 | 0-2 | 2-3 | | SC 12.4.3.a Describe how radiation, conduction, and convection transfer heat in Earth's systems | 4 | | | | | | | SC 12.4.3.b Identify internal and external sources of heat energy in Earth's systems | 4 | | | | | | | SC 12.4.3.c Compare and contrast benefits of renewable and nonrenewable energy sources | 4 | | | | | | | SC 12.4.3.d Describe natural influences (Earth's rotation,
mountain ranges, oceans, differential heating) on global
climate | 4 | | | | | | | Grade 11 Earth's History | Highest
DOK Stage
Tested | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Item
Total | | SCE 12.4.4 General Students will explain the history and evolution of Earth. Extended Students will identify changes in Earth over time. | | 0-1 | 0-1 | 1-3 | 0-2 | 1-3 | | SC 12.4.4.a Recognize that in any sequence of sediments or rocks that has not been overturned, the youngest sediments or rocks are at the top of the sequence and the oldest are at the bottom (law of superposition) | 4 | | | | | | | SC 12.4.4.b Interpret Earth's history by observing rock sequences, using fossils to correlate the sequences at various locations, and using data from radioactive dating methods | 4 | | | | | | | SC 12.4.4.c Compare and contrast the physical and
biological differences of the early Earth with the planet we
live on today | 4 | | | | | | # **Appendix D: Confidentiality Agreement** #### NEBRASKA DEPARTMENT OF EDUCATION #### NEBRASKA STATE ACCOUNTABILITY | | MONTH | YEAR | |--|--|---| | CONFIDENTIALITY AGE | EEMENT | | | PARTICIPANT IN THIS
CONFIDENTIAL. DO NOT REPRO I | , YOU HAVE A DUCE ANY MATERI SS THE MATERIAL | TO THE NEBRASKA DEPARTMENT OF EDUCATION. AS A ACCESS TO TEST ITEMS THAT MUST BE REGARDED AS ALS, DIRECTLY OR INDIRECTLY, DISCLOSE THE CONTENTS SOR ANY ISSUES THAT ARISE DURING THE MEETINGS WITH | | WE ARE CERTAIN THAT YOU SHA
ADHERENCE TO THIS AGREEMEN | | OR TEST SECURITY AND ASK THAT YOU ACKNOWLEDGE YOUR OW. | | | | | | LEGAL FIRST NAME | MI | LEGAL LAST NAME | | SCHOOL | | | | SIGNATURE | | | # FAIRNESS IN TESTING # Guidelines for Training Bias, Fairness, and Sensitivity Issues # **Table of Contents** | Introduction | 126 | |--|------------| | DEFINITION OF BIAS Types of Bias | 127
127 | | Stereotyping | 127 | | Gender Bias | 129 | | Regional or Geographical Bias | 131 | | Ethnic or Cultural Bias | 131 | | Socioeconomic or Class Bias | 132 | | Religious Bias | 132 | | Ageism (Bias Against a Particular Age Group) | 133 | | Bias Against Persons with Disabilities | 134 | | Experiential Bias | 134 | | Maintaining Balance | 135 | | Topics to Avoid | 136 | | Special Circumstances | 137 | | Historical Contexts | 137 | | Literary Contexts | 137 | | Points to Remember
Sample Review Form | 138
139 | | References | 140 | #### Introduction The most important part of the development of any new test is to ensure balanced treatment and control of potential bias, stereotyping, and insensitivity in the items or in the test-related materials. Data Recognition Corporation (DRC) understands that the presence of any type of bias in a test is undesirable not only from a civil rights point of view, but also from a measurement point of view. Issues of bias, fairness, and sensitivity in testing can have a direct impact on test scores. Our test developers are committed to the development of items and tests that are fair for all students. At every stage of the item and test development process, we employ procedures that are designed to ensure that our items and tests meet Standard 7.4 of the *Standards for Educational and Psychological Testing* (AERA, APA, NCME, 1999). Standard 7.4: Test developers should strive to identify and eliminate language, symbols, words, phrases, and content that are generally regarded as offensive by members of racial, ethnic, gender, or other groups, except when judged to be necessary for adequate representation of the domain. In meeting Standard 7.4, DRC employs a series of internal quality steps that we believe are among some of the best in the industry. We provide specific training for our test developers, item writers, and reviewers on how to write, review, revise, and edit items for issues of bias, fairness, and sensitivity, as well as for technical quality. Our training also includes an awareness of and sensitivity to issues of cultural diversity. In addition to providing *internal* training in reviewing items in order to eliminate potential bias, we also provide *external* training to our clients, including state departments of education, review panels of minority experts, teachers, and other stakeholders. DRC understands the importance of having external panels with a wide variety of expertise in reviewing items and tests for potential bias. External panels of professionals provide a review of items for subtle forms of bias that often can be perceived only by individuals who possess a wide variety of appropriate expertise and represent specific constituencies. This manual has been prepared to summarize DRC's guidelines for bias, fairness, and sensitivity, including how to eliminate language, symbols, words, phrases, and content that might be considered offensive by members of racial, ethnic, gender, or other groups. Our guidelines may be modified to meet client's requirements and/or state-specific guidelines. #### **DEFINITION OF BIAS** While there are many definitions of bias, the following definition is provided on page 76 of the *Standards for Educational and Psychological Testing* (AERA, APA, NCME, 1999): The term *bias* in tests and testing refers to construct-irrelevant components that result in systematically lower or higher scores for identifiable groups of examinees. In other words, bias is the presence of some characteristic of an item and/or test that results in two individuals of the same ability but from different subgroups performing differently on the item and/or test. Therefore, it is most important that there are no ambiguities in the test items (questions and responses), passages, prompts, stimulus materials, artwork, graphs, charts, and test-related ancillaries. #### Types of Bias There are many types of bias. They include stereotyping and discriminating against people because of gender, regional or geographical differences, ethnicity or culture, socioeconomic or class status, religion, or age, as well as bias against other groups of people, including those with disabilities. Another form of bias involves the use of questions and/or activities in the items or on a test as a whole that are not relevant to the life experiences of the students responding to the items or test. A definition of each type of bias, along with samples, is provided below. #### **STEREOTYPING** "Stereotype is an image formed by ascribing certain characteristics (e.g., physical, cultural, personal, occupational, historical) to all members of a group" (National Evaluation Systems, Inc. page 2). Stereotyping in test items and tests might include physical characteristics, intellectual characteristics, emotions, careers, activities, and domestic or social roles. In writing or reviewing test items, it is very important that all groups are portrayed fairly, without stereotyping. As a result, there should be a range of characteristics, careers, and
social roles across all groups, and no one group should be characterized by any one particular attribute or characteristic. Following are examples of stereotyping. | Stereotype | Examples | |--------------------------|---| | PHYSICAL CHARACTERISTICS | MALES ARE STRONG AND CAPABLE LEADERS. Females are weak. | #### **Types of Bias** #### **Stereotyping (continued)** The elderly are feeble and sickly. Children are healthy and full of energy. The elderly are dependent upon others. People with disabilities are dependent upon others. Females worry about their hair. Intellectual characteristics Males do better in mathematics and science. Females do better in reading and language arts. Asian Americans excel in academics. Emotions Males are aggressive, courageous, and strong. Females are weak, weepy, tender, and fearful. Stereotyping Examples Careers Females are nurses, teachers, and secretaries. Males are doctors, principals, superintendents, lawyers, and skilled laborers (e.g., plumbers, construction workers, painters). African-Americans are athletes. Hispanics operate lawn care businesses. Asian-Americans own dry cleaning businesses. Activities Females play with dolls and read books. Females do domestic chores (e.g., clean house, cook, sew). Females spend money. Males play sports and work with tools. Boys are rowdy. Girls are quiet. Domestic and/or Social Roles Females are responsible for childcare. Men work outside of the home and are the breadwinners. Community Asian-Americans live in ethnic neighborhoods. African-Americans live in high-rise apartment buildings located in urban areas. American Indians live on reservations. Leadership Men are leaders and rulers. Women are followers. Women are dependent on men. Men are elected to political positions. Females in leadership roles are aggressive and pushy. Types of Bias (continued) #### GENDER BIAS Gender bias involves items (questions and responses), passages, prompts, stimulus materials, artwork, graphs, charts, and test-related ancillaries that show members of either sex in stereotypical activities, emotions, occupations, characteristics, and/or situations. Gender bias also involves the use of demeaning labels. Examples of gender bias TITLES AND SPECIFIC TERMS REFERRING TO HUMANITY AT LARGE, SUCH AS - Mankind - Manhood - Manpower - Man of the hour - Man-hours - Man-made Use of gender specific terms for occupations, such as - Fireman - Workman - Chairman - Policeman - Mailman - Salesman - Insurance man - Businessman - Congressman Use of pronouns that imply a stereotype, such as - The nurse went to the hospital, and *she* was able to talk with the patient. - The factory worker needed to earn more money for *his* family. - When the lawyer delivered *his* closing remarks, the jury listened carefully. - A politician must give a lot of speeches when *he* runs for office. #### TYPES OF BIAS #### GENDER BIAS (CONTINUED) Use of phrases that identify genders in terms of their roles or occupations, such as - Men and girls were invited to the lecture. - The travelers took their wives and children with them. - The happy couple was introduced as man and wife. Use of phrases or words with an emphasis on marital status, such as - Abraham Lincoln and Mrs. Lincoln attended the play. - George Washington and Martha visited the new building. - Dr. and Mrs. Jones attended the opening of the new warehouse. - The admirable Dr. George Halstead and his wife, Maria, visited the library. Use of words that identify genders in the salutation of a business letter, such as - Dear Sir: - Dear Madam: - Dear Gentlemen: Use of words or phases that are not parallel, such as - The girls' restroom is down the hall, and the men's restroom is on the second floor. - The boys' locker room door is painted green, and the women's locker room door is painted vellow. - The men's department is on the right; the ladies' department is on the left. Use of figures of speech, such as - Old wives' tale - Right-hand man - Man versus nature - The best man for the job - The better half Use of gender-specific terms or diminutive words, such as - Sweet young thing - Usherette - Housewife - Maid - Cleaning lady - Little woman - Career girl - Houseboy - Steward Types of Bias (continued) #### Regional or Geographical Bias Regional and/or geographical bias involves items (questions and responses), passages, prompts, stimulus materials, artwork, graphs, charts, and test-related ancillaries that include terms that are not commonly used nationwide or within a particular region or state to which the test will be given. It also involves the use of terms that have different connotations in different parts of the country and/or geographical regions. It is important to note that some experiences may not be common to all students. For example, within a given geographic area not all students might be familiar with snow, so questions involving sleds and toboggans, for example, may well reflect a regional or geographical bias. Examples of regional or geographical bias - She ordered a new davenport (couch or sofa). - Go get your toboggan (hat or type of sled). - The students stood in line at the bubbler (water fountain or drinking fountain). - Turn left at the berm (curb). - Take the pike (road). #### **Ethnic or Cultural Bias** Ethnic bias involves items (questions and responses), passages, prompts, stimulus materials, artwork, graphs, charts, and test-related ancillaries that include terms that are demeaning and/or offensive to a particular ethnic group or culture. In addition, no minority group should be portrayed as being uneducated or poor. Examples of ethnic or cultural bias - Maria was in the kitchen making tacos. - The Chinese owned a laundry in our area. - Native Americans are very close to nature. #### **Terminology** Terms that have a negative connotation or that reinforce negative judgments should also be avoided. Following is a list of **acceptable** terms. - African-American - Asian-American or Pacific Island American - Latino, Mexican-American, Hispanic - Tribal name (preferred), Native American, American Indian • European-American Types of Bias (continued) #### Socioeconomic or Class Bias Socioeconomic or class bias involves items (questions and responses), passages, prompts, stimulus materials, artwork, graphs, charts, and test-related ancillaries that include activities, possessions, or ideas that may not be common to all students within a given area. For example, not all students in a given area own CD players or video games, nor do all students in a given area participate in certain sports activities, such as golf, snow skiing, or sailing. In addition, not all students in a given area take expensive vacations or attend expensive schools. Examples of socioeconomic or class bias - They were members of the country club. - Boarding school. - How many golf balls landed in the lake? - The club members plan to go snow skiing over the holidays. - My great aunt lives in a town house overlooking Lake Michigan. #### **Religious Bias** Religious bias involves items (questions and responses), passages, prompts, stimulus materials, artwork, graphs, charts, and test-related ancillaries that include terms that are demeaning and/or offensive to a particular religious group. Examples of religious bias - The house on Smith Street is decorated for Halloween. - There were several Christmas trees in the window. - The students in the class will stand and say the *Pledge of Allegiance*. - The high school students will be attending a rock-and-roll dance at the community center. It is also important to note that no religious belief or practice should be portrayed as a universal norm or as inferior or superior to any other. Types of Bias #### Ageism (Bias Against a Particular Age Group) There are other subtle forms of bias, including bias against the elderly or ageism. Ageism involves items (questions and responses), passages, prompts, stimulus materials, artwork, graphs, charts, and test-related ancillaries that include terms that are demeaning and/or offensive to the elderly or older persons (65 years or older). Ageism can also involve issues of bias with other age groups, including teenagers and young children. It is important to note, however, that representing older persons or any age group fairly does not mean that the content of the items has to be revised or rewritten to seem unrealistic. Rather, as a whole, the items and the test should show older people or any age group in a variety of roles and activities whenever they appear naturally in the test content. Examples of ageism (bias against a particular age group) - Despite the fact that she was very old, she was able to walk down the stairs. - The child's grandfather seemed senile. - They were acting like typical irresponsible teenagers. #### **Bias Against Persons with Disabilities** Another form of subtle bias involves issues of bias related to persons with disabilities. This type of bias involves items (questions and responses), passages, prompts, stimulus materials, artwork, graphs, charts, and test-related ancillaries that include terms that are demeaning and/or offensive to persons with disabilities. It is important to note, however, that representing persons with disabilities does not mean that the content of the items has to be revised or rewritten to seem unrealistic. Rather, as a whole, the items and the test should show people with disabilities in a variety of roles and activities whenever they appear naturally in the test content. Examples of bias against persons with disabilities - After the car accident, the student was confined to a wheelchair. - He became a successful writer despite his disability. - She is a blind person. - The student is handicapped. - The child made great strides in overcoming her disability. Types of Bias #### **Bias Against Persons with Disabilities (continued)** *Terminology* Terms that have a
negative connotation or that reinforce negative judgments (crippled, victim, afflicted, confined, etc.) should also be avoided. It is also important that no one with a disability should be pictured as helpless or portrayed as pitiful. Do not use Use Retarded Developmentally delayed Hard of hearing Hearing impaired Deaf and Dumb or Deaf-mute Deaf or hard-of-hearing used accurately Learning-disabled Person with a learning disability Handicap Disability Visually-impaired or Blind used accurately #### **EXPERIENTIAL BIAS** The questions and activities reflected in the items or test, as a whole, should also be relevant to the life experiences of the students responding to the items. In other words, for a student to respond sensibly to the test questions, he or she must know what the question is about. In addition, culturally specific knowledge should be avoided, along with the use of difficult words and figures of speech. Examples of experiential bias - Pat knew she would win the race as she had an ace up her sleeve. - Put the pedal to the metal and clean up your room. - I needed change for the subway turnstile. - The arroyos filled quickly during the storm. - The super takes care of cleaning the fover. ### **MAINTAINING BALANCE** Bias may also occur as a result of having a lack of balance through underrepresentation of a particular ethnic group and/or gender. Therefore, whenever possible, tests and test-related materials should contain content that is balanced across ethnic groups and across gender. The content of the pool of items and/or test, as a whole, should also reflect cultural diversity. In order to achieve balance, the test developers at DRC review the pool of items or the test, as a whole, to determine whether or not there is an adequate representation of - Females and males in both traditional and nontraditional roles - Female and male names - Minority groups in various environments and occupations - Minority groups, including the use of names The issue of fairness also involves content inclusiveness. Subtle forms of bias can result from omitting certain areas of information and/or from omitting certain topics. Wherever possible, the content should show people in everyday situations and groups should be depicted as fully integrated in the society, reflecting the diverse multicultural composition of society as a whole (NES, page 9). ### **TOPICS TO AVOID** Because issues of bias, fairness, and sensitivity in testing can have a direct impact on the test scores, it is also important that sensitive and offensive topics be avoided. A topic might be considered offensive or controversial if it offends teachers, students, parents, or the community at large. This includes highly charged and controversial topics such as abortion, the death penalty, and evolution. Unacceptable content might also include less controversial topics, such as the use of tobacco or topics that could evoke unpleasant emotions on the part of a given student. In addition, topics that appear to promote or defend a particular set of values should be avoided. It is important to remember that the ability of the student to take the test should never be undermined. Following are examples of topics generally to be avoided. #### Examples of topics to be generally avoided - ABORTION - Alcohol, including beer and wine - Behaviors that are inappropriate, including stealing, cheating, lying, and other criminal and/or anti-social behaviors and activities - Biographies of controversial figures whether or not they are still alive - Birthdays - Cancer and other diseases that might be considered fatal (HIV, AIDS) - Criticism of democracy or capitalism - Dangerous behavior - Death of animals or animals dying or being mistreated - Death, murder, and suicide - Disasters, including tornadoes, hurricanes, etc. (unless treated as scientific subjects) - Disrespect of any mainstream racial or religious group - Double meanings of words that have sexually suggestive meanings - Evolution - Family experiences that may be upsetting, including divorce or loss of a job - Feminist or chauvinistic topics - Gambling - Guns and gun control - Holidays of religious origin (e.g., Halloween, Christmas, Easter) - Junk food, including candy, gum, chips - Left- or right-wing politics - Luxuries (homes with swimming pools, expensive clothes, expensive vacations, and sports activities that typically require the purchase of expensive equipment such as snow skiing) - Parapsychology - Physical, emotional, and/or mental abuse, including animal, child, and/or spousal abuse - Religions, except in appropriate historical context; mythology, folk tales, and fables may contain religious elements as part of appropriately presented literary excerpts. - Sex, including kissing and dating - Slavery (unless presented in an historical context and presented appropriately) - Tobacco - Violence against a particular group of people or animals - Rock music, including rap and heavy metal - Wars - Witchcraft, sorcery, or magic - Words that might be problematic to a specific ethnic group #### **SPECIAL CIRCUMSTANCES** In certain subject areas, a sensitive topic may be acceptable because the topic is a part of the course of study or may be required in order to measure the specific curriculum content standards and/or test objectives. For example, it may be appropriate to have test questions dealing with hurricanes. However, the questions should not focus unduly upon the destruction of property or the deaths of human beings. Other special circumstances include historical and literary contexts. A discussion of these special circumstances is provided below. #### Historical Contexts In order to measure the content curriculum standards, social studies tests often include topics that might otherwise be deemed as controversial. For example, in a history test, the topic of slavery might be used. The student would know that such a controversial topic is used to access knowledge of a particular curriculum content standard and/or set of objectives and, therefore, the topic would not reflect the views of the test developer. #### Literary Contexts Today's tests often require the use of authentic or previously published passages. As a result, sometimes a given passage or prompt might contain controversial material, including sentences, phrases, and/or words. If the overall passage or prompt is acceptable, it may be possible to edit and or delete the objectionable sentences, phrases, words, and/or references in order to eliminate the potential bias. In such cases, DRC test developers request permission from the publisher to make such edits and/or changes, and they would do so only if permission is granted. ### POINTS TO REMEMBER When reviewing items (questions and responses), passages prompts, stimulus materials, artwork, graphs, charts, and test-related ancillaries for issues of bias, fairness, and sensitivity, the following questions should be asked. 1. Do the items (questions and responses), passages, prompts, stimulus materials, artwork, graphs, charts, and test-related ancillaries: Demean any religious, ethnic, cultural, or social group? Portray anyone or any group in a stereotypical manner? Contain any other forms of bias, including gender, regional or geographical, ethnic or cultural, socioeconomic or class, religious, age-related bias, or bias against persons with disabilities? - 2. Are there any topics that might disadvantage a student for any reason? - 3. Are there any culturally specific sets of knowledge, terms, difficult words and/or figures of speech that might disadvantage a group of students? - 4. Are the questions and activities reflected in the items or test, as a whole, relevant to the life experiences of the students responding to the items? - 5. As a whole, does the test or pool of items have a balance across ethnic groups and across genders, including an adequate representation of: Females and males in both traditional and nontraditional roles Female and male names Minority groups in various environments and occupations Minority groups, including the use of ethnic names 6. Wherever possible, does the content show minority groups in everyday situations and groups depicted as fully integrated in the society, reflecting the multicultural composition of society as a whole? ### **Appendix E References** American Educational Research Association, American Psychological Association, and National Council on Measurement in Education. (1999). *Standards for educational and psychological testing*. Washington, DC: American Educational Research Association. Haladyna, T. (1999). *Developing and validating multiple-choice test questions*. Mahwah, NJ: Lawrence Erlbaum. Joint Committee on Testing Practices. (1988). *Code of fair testing practices in education*. Washington, DC: Joint Committee on Testing Practices. McDivitt, P.J., Newsome, D., Shoffner, M., Wall, J., and Watts, R. (2002). *Applying the standards for educational and psychological testing: What teachers and counselors need to know.* Alexandria, VA: Association for Assessment in Counseling. National Evaluation Systems, Inc. (1990). *Bias concerns in test development*. Amherst, MA: The National Evaluation Systems, Inc. Osterlind, S.J. (1998). *Constructing test items: multiple-choice, constructed-response, performance, and other formats*, 2nd ed. AH Dordrecht, The Netherlands: Kluwer Academic Publishers. Sandoval, J., Frisy, C.L., Geisinger, K.F., Scheuneman, J.D., and Grenier, J.R. Eds, (1998). *Test interpretation and diversity*. Washington, DC: American Psychological Association. Sebranek, P., Meyer, V., and Kemper, D. (1996). Writers Inc.: A handbook for writing and learning. Lexington, MA: D.C. Heath and Company. # **Appendix F: Reading Key Verification and Foil Analysis** | | | | | | Grade | 3 Read | ding | | | | | | | |------|---------|-----|--------|-----------------|-------|--------|------|-----|-----|-------|--------|--------|-----| | | GENERAL |
| COUNTS | | PR | OPORT | IONS | | | | CORREL | ATIONS | | | Туре | Item ID | Key | N | <i>p</i> -value | Α | В | С | - | * | Total | Α | В | С | | OP | 650565 | Α | 262 | .37 | .37 | .23 | .23 | .18 | .00 | .35 | .35 | .26 | .04 | | OP | 650617 | С | 262 | .72 | .02 | .12 | .72 | .15 | .00 | .66 | 06 | 08 | .66 | | OP | 650627 | В | 262 | .45 | .07 | .45 | .32 | .16 | .00 | .60 | 05 | .60 | .01 | | OP | 650631 | С | 262 | .72 | .05 | .08 | .72 | .15 | .00 | .69 | 08 | 10 | .69 | | OP | 650716 | В | 262 | .52 | .13 | .52 | .19 | .16 | .00 | .65 | .00 | .65 | 08 | | OP | 675833 | С | 262 | .61 | .07 | .15 | .61 | .16 | .00 | .55 | .00 | .04 | .55 | | OP | 691040 | В | 262 | .43 | .23 | .43 | .17 | .17 | .00 | .45 | .21 | .45 | 04 | | OP | 691043 | В | 262 | .56 | .12 | .56 | .16 | .16 | .00 | .65 | 01 | .65 | 08 | | OP | 691044 | В | 262 | .58 | .10 | .58 | .18 | .15 | .00 | .60 | 02 | .60 | 03 | | OP | 691048 | С | 262 | .71 | .03 | .09 | .71 | .17 | .00 | .69 | 02 | 07 | .69 | | OP | 707756 | Α | 262 | .53 | .53 | .11 | .22 | .14 | .00 | .57 | .57 | 04 | 03 | | OP | 707757 | В | 262 | .56 | .13 | .56 | .17 | .13 | .00 | .55 | .04 | .55 | 09 | | OP | 707759 | Α | 262 | .65 | .65 | .08 | .11 | .16 | .00 | .72 | .72 | 13 | 07 | | OP | 707760 | В | 262 | .43 | .16 | .43 | .23 | .17 | .00 | .49 | .10 | .49 | .04 | | OP | 707761 | С | 262 | .52 | .19 | .14 | .52 | .15 | .00 | .55 | .09 | 08 | .55 | | OP | 707763 | Α | 262 | .51 | .51 | .11 | .21 | .17 | .00 | .50 | .50 | .07 | .06 | | OP | 707765 | С | 262 | .45 | .20 | .18 | .45 | .17 | .00 | .42 | .14 | .07 | .42 | | OP | 707766 | С | 262 | .71 | .03 | .12 | .71 | .14 | .00 | .66 | 12 | 08 | .66 | | OP | 707767 | С | 262 | .65 | .10 | .12 | .65 | .14 | .00 | .60 | 03 | 05 | .60 | | OP | 707768 | В | 262 | .69 | .06 | .69 | .10 | .14 | .00 | .65 | 07 | .65 | 09 | | OP | 707769 | Α | 262 | .58 | .58 | .17 | .10 | .15 | .00 | .58 | .58 | .05 | 10 | | OP | 707770 | Α | 262 | .66 | .66 | .05 | .15 | .13 | .00 | .68 | .68 | 09 | 14 | | OP | 707771 | С | 262 | .55 | .12 | .19 | .55 | .14 | .00 | .43 | .01 | .09 | .43 | | OP | 707772 | В | 262 | .52 | .30 | .52 | .03 | .15 | .00 | .62 | 05 | .62 | 05 | | OP | 708015 | Α | 262 | .47 | .47 | .18 | .21 | .15 | .00 | .55 | .55 | .05 | 05 | | FT | 749135 | Α | 119 | .37 | .37 | .08 | .32 | .23 | .00 | .53 | .53 | .07 | .16 | | FT | 749136 | В | 139 | .45 | .21 | .45 | .23 | .11 | .00 | .34 | .08 | .34 | .02 | | FT | 749138 | Α | 139 | .59 | .59 | .15 | .16 | .10 | .00 | .59 | .59 | 10 | 14 | | FT | 749140 | С | 139 | .71 | .14 | .06 | .71 | .10 | .00 | .57 | 16 | .01 | .57 | | FT | 749141 | Α | 119 | .41 | .41 | .11 | .25 | .23 | .00 | .55 | .55 | .01 | .18 | | FT | 749142 | С | 119 | .61 | .08 | .08 | .61 | .23 | .00 | .67 | .11 | 02 | .67 | | FT | 749143 | В | 139 | .68 | .18 | .68 | .04 | .10 | .00 | .49 | .01 | .49 | 13 | | FT | 749144 | В | 139 | .51 | .09 | .51 | .30 | .09 | .00 | .53 | 09 | .53 | 08 | | FT | 749221 | Α | 119 | .28 | .28 | .13 | .37 | .23 | .00 | .46 | .46 | .06 | .26 | | | | | | | Grade | 3 Read | ling | | | | | | | |------|---------|-----|--------|-----------------|-------|--------|------|-----|-----|-------|--------|--------|-----| | | GENERAL | | COUNTS | | PR | OPORT | IONS | | | | CORREL | ATIONS | ı | | Туре | Item ID | Key | N | <i>p</i> -value | Α | В | C | | * | Total | Α | В | С | | FT | 749223 | С | 119 | .42 | .14 | .21 | .42 | .23 | .00 | .43 | .08 | .27 | .43 | | FT | 749224 | С | 119 | .57 | .12 | .08 | .57 | .23 | .00 | .62 | .09 | .05 | .62 | | FT | 749225 | В | 139 | .42 | .20 | .42 | .27 | .10 | .00 | .52 | 12 | .52 | .01 | | FT | 750257 | С | 119 | .66 | .06 | .05 | .66 | .23 | .00 | .73 | .01 | .01 | .73 | | FT | 750258 | Α | 139 | .27 | .27 | .18 | .44 | .11 | .00 | .28 | .28 | .17 | .06 | | FT | 750259 | Α | 139 | .29 | .29 | .26 | .35 | .10 | .00 | .23 | .23 | .02 | .20 | | FT | 750260 | В | 119 | .18 | .13 | .18 | .47 | .23 | .00 | .29 | .18 | .29 | .36 | | | | | | | Grade 4 | 4 Readi | ng | | | | | | | |------|---------|-----|--------|-----------------|---------|---------|-----|-----|-----|-------|---------|--------|-----| | | GENERAL | | COUNTS | | PRO | PORTI | ONS | | | (| CORRELA | ATIONS | 1 | | Туре | Item ID | Key | N | <i>p</i> -value | Α | В | С | - | * | Total | Α | В | С | | OP | 650970 | Α | 275 | .68 | .68 | .10 | .13 | .09 | .00 | .64 | .64 | 11 | 16 | | OP | 650974 | Α | 275 | .66 | .66 | .11 | .14 | .09 | .00 | .65 | .65 | 07 | 23 | | OP | 650976 | Α | 275 | .63 | .63 | .11 | .16 | .09 | .00 | .65 | .65 | 09 | 19 | | OP | 650990 | В | 275 | .75 | .09 | .75 | .07 | .09 | .00 | .68 | 16 | .68 | 19 | | OP | 675853 | В | 275 | .73 | .05 | .73 | .13 | .09 | .00 | .69 | 10 | .69 | 24 | | OP | 691050 | С | 275 | .60 | .15 | .15 | .60 | .10 | .00 | .51 | 06 | 03 | .51 | | OP | 691051 | Α | 275 | .71 | .71 | .07 | .13 | .09 | .00 | .72 | .72 | 15 | 25 | | OP | 691057 | В | 275 | .52 | .17 | .52 | .21 | .10 | .00 | .53 | 01 | .53 | 09 | | OP | 691058 | С | 275 | .67 | .14 | .10 | .67 | .09 | .00 | .48 | 03 | 03 | .48 | | OP | 691061 | С | 275 | .73 | .08 | .10 | .73 | .09 | .00 | .64 | 15 | 13 | .64 | | OP | 691063 | В | 275 | .62 | .12 | .62 | .16 | .10 | .00 | .58 | .00 | .58 | 19 | | OP | 707773 | С | 275 | .78 | .08 | .05 | .78 | .09 | .00 | .55 | 05 | 06 | .55 | | OP | 707774 | В | 275 | .59 | .07 | .59 | .26 | .09 | .00 | .53 | 13 | .53 | 07 | | OP | 707775 | Α | 275 | .48 | .48 | .15 | .27 | .09 | .00 | .47 | .47 | .02 | 07 | | OP | 707776 | С | 275 | .65 | .13 | .12 | .65 | .09 | .00 | .49 | 06 | 02 | .49 | | OP | 707777 | Α | 275 | .75 | .75 | .06 | .10 | .09 | .00 | .71 | .71 | 19 | 20 | | OP | 707778 | В | 275 | .48 | .13 | .48 | .30 | .09 | .00 | .40 | .10 | .40 | 05 | | OP | 707779 | С | 275 | .65 | .17 | .08 | .65 | .10 | .00 | .48 | .02 | 06 | .48 | | OP | 707780 | С | 275 | .60 | .17 | .14 | .60 | .09 | .00 | .47 | .04 | 14 | .47 | | OP | 707781 | С | 275 | .59 | .16 | .16 | .59 | .09 | .00 | .50 | 04 | 06 | .50 | | OP | 707782 | Α | 275 | .45 | .45 | .41 | .05 | .09 | .00 | .34 | .34 | .14 | 14 | | OP | 707785 | В | 275 | .59 | .09 | .59 | .23 | .10 | .00 | .57 | .00 | .57 | 14 | | OP | 707786 | С | 275 | .79 | .02 | .12 | .79 | .08 | .00 | .58 | 02 | 19 | .58 | | OP | 707787 | Α | 275 | .87 | .87 | .04 | .01 | .08 | .00 | .68 | .68 | 13 | 17 | | OP | 707789 | Α | 275 | .64 | .64 | .12 | .14 | .10 | .00 | .61 | .61 | 06 | 15 | | | | | | | Grade 4 | 4 Readi | ng | | | | | | | |------|---------|-----|--------|-----------------|---------|---------|-----|-----|-----|-------|---------|--------|-----| | | GENERAL | | COUNTS | | PRO | PORTI | ONS | | | | CORRELA | ATIONS | | | Туре | Item ID | Key | N | <i>p</i> -value | Α | В | С | - | * | Total | Α | В | С | | FT | 749148 | С | 129 | .69 | .12 | .09 | .69 | .10 | .00 | .53 | 12 | .04 | .53 | | FT | 749149 | С | 144 | .74 | .07 | .10 | .74 | .08 | .00 | .55 | 07 | 08 | .55 | | FT | 749150 | В | 144 | .63 | .14 | .63 | .15 | .08 | .00 | .56 | .04 | .56 | 24 | | FT | 749151 | Α | 129 | .76 | .76 | .09 | .05 | .11 | .00 | .70 | .70 | 08 | 25 | | FT | 749152 | С | 144 | .67 | .12 | .13 | .67 | .08 | .00 | .57 | 06 | 14 | .57 | | FT | 749153 | В | 129 | .62 | .08 | .62 | .19 | .11 | .00 | .64 | 11 | .64 | 13 | | FT | 749154 | Α | 129 | .77 | .77 | .09 | .05 | .10 | .00 | .65 | .65 | 03 | 22 | | FT | 749226 | Α | 144 | .70 | .70 | .10 | .12 | .08 | .00 | .64 | .64 | 11 | 19 | | FT | 749227 | В | 144 | .60 | .09 | .60 | .22 | .08 | .00 | .52 | 04 | .52 | 10 | | FT | 749228 | В | 129 | .38 | .32 | .38 | .19 | .11 | .00 | .38 | .22 | .38 | 14 | | FT | 749229 | С | 144 | .62 | .21 | .09 | .62 | .08 | .00 | .39 | .10 | 11 | .39 | | FT | 749230 | В | 144 | .44 | .24 | .44 | .24 | .08 | .00 | .39 | .18 | .39 | 16 | | FT | 749231 | В | 144 | .53 | .14 | .53 | .25 | .08 | .00 | .54 | .03 | .54 | 19 | | FT | 749719 | Α | 129 | .50 | .50 | .21 | .19 | .11 | .00 | .55 | .55 | 18 | .06 | | FT | 749720 | Α | 129 | .69 | .69 | .04 | .17 | .10 | .00 | .66 | .66 | 11 | 18 | | FT | 749721 | С | 129 | .62 | .12 | .16 | .62 | .10 | .00 | .45 | 09 | .09 | .45 | | | | | | Gra | de 5 F | Readir | ıg | | | | | | | |------|---------|-----|--------|-----------------|--------|--------|-----|-----|-----|-------|-------|--------|-----| | | GENERAL | | COUNTS | | PRO | PORTI | ONS | | | C | ORREL | ATIONS | 5 | | Туре | Item ID | Key | N | <i>p</i> -value | Α | В | С | - | * | Total | Α | В | С | | OP | 651132 | Α | 314 | .57 | .57 | .15 | .19 | .09 | .00 | .59 | .59 | 04 | 21 | | OP | 651152 | Α | 314 | .65 | .65 | .12 | .15 | .09 | .00 | .64 | .64 | 14 | 18 | | OP | 651154 | Α | 314 | .70 | .70 | .07 | .14 | .09 | .00 | .60 | .60 | 10 | 15 | | OP | 673824 | В | 314 | .53 | .17 | .53 | .23 | .08 | .00 | .39 | .02 | .39 | 04 | | OP | 691067 | В | 314 | .78 | .02 | .78 | .11 | .09 | .00 | .66 | 03 | .66 | 24 | | OP | 691072 | С | 314 | .52 | .21 | .19 | .52 | .08 | .00 | .40 | .09 | 12 | .40 | | OP | 691073 | С | 314 | .71 | .11 | .09 | .71 | .09 | .00 | .54 | 04 | 13 | .54 | | OP | 691075 | В | 314 | .57 | .19 | .57 | .15 | .09 | .00 | .62 | 16 | .62 | 11 | | OP | 691077 | В | 314 | .77 | .13 | .77 | .02 | .08 | .00 | .39 | .08 | .39 | 11 | | OP | 691078 | С | 314 | .75 | .08 | .10 | .75 | .08 | .00 | .53 | 02 | 15 | .53 | | OP | 691079 | В | 314 | .58 | .10 | .58 | .23 | .09 | .00 | .58 | 06 | .58 | 17 | | OP | 707790 | Α | 314 | .57 | .57 | .20 | .16 | .07 | .00 | .58 | .58 | 11 | 20 | | OP | 707792 | С | 314 | .44 | .24 | .24 | .44 | .09 | .00 | .22 | .14 | .06 | .22 | | OP | 707793 | Α | 314 | .35 | .35 | .22 | .34 | .08 | .00 | .25 | .25 | .04 | .10 | | OP | 707798 | В | 314 | .70 | .09 | .70 | .12 | .09 | .00 | .69 | 19 | .69 | 20 | | OP | 707799 | В | 314 | .51 | .15 | .51 | .26 | .09 | .00 | .45 | .01 | .45 | 07 | | ОР | 707800 | С | 314 | .58 | .17 | .17 | .58 | .08 | .00 | .45 | 06 | 04 | .45 | | | | | | Gra | de 5 F | Readin | ıg | | | | | | | |------|---------|-----|--------|-----------------|--------|--------|-----|-----|-----
-------|-------|--------|-----| | | GENERAL | | COUNTS | | PRO | PORTI | ONS | | | C | ORREL | ATIONS | 5 | | Туре | Item ID | Key | N | <i>p</i> -value | Α | В | С | - | * | Total | Α | В | С | | OP | 707801 | Α | 314 | .64 | .64 | .18 | .11 | .07 | .00 | .55 | .55 | 14 | 11 | | OP | 707802 | В | 314 | .75 | .09 | .75 | .10 | .07 | .00 | .52 | 06 | .52 | 15 | | OP | 707803 | С | 314 | .53 | .16 | .23 | .53 | .08 | .00 | .38 | 03 | .02 | .38 | | OP | 707804 | Α | 314 | .48 | .48 | .16 | .28 | .09 | .00 | .44 | .44 | 04 | 03 | | OP | 707806 | Α | 314 | .40 | .40 | .08 | .43 | .09 | .00 | .40 | .40 | 06 | .04 | | OP | 707807 | С | 314 | .83 | .06 | .05 | .83 | .07 | .00 | .61 | 17 | 15 | .61 | | OP | 708023 | С | 314 | .64 | .12 | .16 | .64 | .08 | .00 | .30 | .07 | .04 | .30 | | OP | 708027 | В | 314 | .75 | .08 | .75 | .09 | .08 | .00 | .62 | 13 | .62 | 19 | | FT | 749158 | В | 173 | .64 | .12 | .64 | .16 | .08 | .00 | .57 | .02 | .57 | 25 | | FT | 749159 | Α | 139 | .29 | .29 | .09 | .55 | .08 | .00 | .27 | .27 | 13 | .20 | | FT | 749160 | С | 139 | .45 | .14 | .32 | .45 | .08 | .00 | .19 | 11 | .28 | .19 | | FT | 749162 | С | 173 | .33 | .21 | .38 | .33 | .08 | .00 | .09 | .10 | .22 | .09 | | FT | 749163 | Α | 139 | .81 | .81 | .05 | .06 | .08 | .00 | .70 | .70 | 16 | 22 | | FT | 749164 | Α | 173 | .40 | .40 | .20 | .32 | .08 | .00 | .57 | .57 | 10 | 12 | | FT | 749239 | В | 139 | .29 | .22 | .29 | .41 | .08 | .00 | .40 | .03 | .40 | 02 | | FT | 749240 | Α | 173 | .41 | .41 | .27 | .24 | .08 | .00 | .37 | .37 | .25 | 24 | | FT | 749241 | С | 173 | .42 | .27 | .23 | .42 | .08 | .00 | .13 | .07 | .21 | .13 | | FT | 749245 | С | 173 | .50 | .23 | .19 | .50 | .08 | .00 | .07 | .18 | .19 | .07 | | FT | 749246 | В | 173 | .29 | .13 | .29 | .49 | .08 | .00 | .21 | .15 | .21 | .08 | | FT | 749247 | С | 139 | .61 | .12 | .19 | .61 | .08 | .00 | .44 | .02 | 09 | .44 | | FT | 749251 | Α | 173 | .54 | .54 | .11 | .27 | .08 | .00 | .64 | .64 | 18 | 17 | | FT | 751398 | В | 139 | .58 | .10 | .58 | .24 | .08 | .00 | .64 | 07 | .64 | 25 | | FT | 751399 | С | 139 | .46 | .29 | .17 | .46 | .08 | .00 | .18 | .17 | .06 | .18 | | FT | 755215 | В | 139 | .35 | .32 | .35 | .24 | .08 | .00 | .34 | .13 | .34 | 09 | | | | | | • | irade 6 | Read | ing | | | | | | | |------|----------------|-----|--------|-----------------|---------|--------------|------|-----|-----|-------|-------|--------|-----| | | GENERAL | | COUNTS | | PRO | OPORT | IONS | | | С | ORREL | ATIONS | 5 | | Туре | Item ID | Key | N | <i>p</i> -value | Α | В | С | - | * | Total | Α | В | С | | OP | 651278 | С | 332 | .67 | .16 | .11 | .67 | .06 | .00 | .54 | 17 | 17 | .54 | | OP | 651279 | В | 332 | .45 | .18 | .45 | .31 | .06 | .00 | .48 | 03 | .48 | 18 | | OP | 651285 | Α | 332 | .47 | .47 | .16 | .31 | .06 | .00 | .48 | .48 | 15 | 12 | | OP | 673835 | Α | 332 | .67 | .67 | .12 | .15 | .06 | .00 | .60 | .60 | 13 | 27 | | OP | 691082 | С | 332 | .70 | .13 | .11 | .70 | .06 | .00 | .52 | 17 | 15 | .52 | | OP | 691085 | В | 332 | .55 | .11 | .55 | .29 | .06 | .00 | .47 | 07 | .47 | 17 | | OP | 691087 | С | 332 | .77 | .10 | .08 | .77 | .06 | .00 | .56 | 11 | 24 | .56 | | OP | 691088 | Α | 332 | .59 | .59 | .13 | .24 | .05 | .00 | .49 | .49 | 22 | 14 | Nebraska State Accountability Alternate Assessment 2016 Technical Report | | | | | G | Grade 6 | Readi | ing | | | | | | | |------|---------|-----|--------|-----------------|---------|-------|------|-----|-----|-------|-------|--------|-----| | | GENERAL | | COUNTS | | PRO | OPORT | IONS | | | С | ORREL | ATIONS | | | Туре | Item ID | Key | N | <i>p</i> -value | Α | В | С | - | * | Total | Α | В | С | | OP | 691089 | Α | 332 | .84 | .84 | .05 | .06 | .05 | .00 | .37 | .37 | 03 | 05 | | OP | 691091 | В | 332 | .67 | .08 | .67 | .20 | .06 | .00 | .56 | 14 | .56 | 22 | | OP | 691092 | В | 332 | .41 | .18 | .41 | .34 | .07 | .00 | .41 | 01 | .41 | 11 | | OP | 691094 | С | 332 | .74 | .14 | .07 | .74 | .05 | .00 | .55 | 23 | 19 | .55 | | OP | 691096 | Α | 332 | .72 | .72 | .09 | .13 | .06 | .00 | .56 | .56 | 13 | 24 | | OP | 691097 | Α | 332 | .75 | .75 | .07 | .14 | .04 | .00 | .53 | .53 | 20 | 25 | | OP | 707809 | Α | 332 | .64 | .64 | .08 | .22 | .05 | .00 | .56 | .56 | 12 | 26 | | OP | 707812 | С | 332 | .55 | .20 | .19 | .55 | .06 | .00 | .30 | 06 | .01 | .30 | | OP | 707813 | Α | 332 | .40 | .40 | .18 | .36 | .06 | .00 | .31 | .31 | 09 | .04 | | OP | 707814 | С | 332 | .74 | .10 | .10 | .74 | .06 | .00 | .53 | 09 | 22 | .53 | | OP | 707816 | В | 332 | .59 | .15 | .59 | .20 | .06 | .00 | .51 | 12 | .51 | 18 | | OP | 707817 | В | 332 | .85 | .05 | .85 | .05 | .06 | .00 | .56 | 19 | .56 | 13 | | OP | 707819 | В | 332 | .52 | .13 | .52 | .29 | .06 | .00 | .42 | 09 | .42 | 09 | | OP | 707820 | Α | 332 | .62 | .62 | .09 | .24 | .05 | .00 | .59 | .59 | 15 | 32 | | OP | 707821 | В | 332 | .50 | .17 | .50 | .28 | .05 | .00 | .45 | 04 | .45 | 19 | | OP | 707822 | С | 332 | .58 | .09 | .28 | .58 | .05 | .00 | .37 | 14 | 08 | .37 | | OP | 708026 | В | 332 | .70 | .12 | .70 | .13 | .05 | .00 | .49 | 22 | .49 | 12 | | FT | 749166 | В | 177 | .55 | .15 | .55 | .26 | .03 | .00 | .50 | .09 | .50 | 46 | | FT | 749167 | В | 154 | .64 | .08 | .64 | .18 | .10 | .00 | .57 | 08 | .57 | 14 | | FT | 749168 | С | 177 | .58 | .11 | .27 | .58 | .03 | .00 | .14 | .03 | .01 | .14 | | FT | 749169 | В | 177 | .72 | .11 | .72 | .14 | .03 | .00 | .63 | 25 | .63 | 35 | | FT | 749170 | В | 177 | .34 | .21 | .34 | .42 | .03 | .00 | .15 | 16 | .15 | .15 | | FT | 749218 | Α | 154 | .42 | .42 | .16 | .32 | .10 | .00 | .45 | .45 | 03 | 02 | | FT | 749219 | С | 177 | .62 | .23 | .12 | .62 | .03 | .00 | .28 | 13 | 01 | .28 | | FT | 749220 | В | 177 | .73 | .12 | .73 | .12 | .03 | .00 | .56 | 19 | .56 | 33 | | FT | 749233 | С | 154 | .70 | .08 | .11 | .70 | .10 | .00 | .47 | .07 | 11 | .47 | | FT | 749234 | Α | 177 | .54 | .54 | .27 | .16 | .03 | .00 | .47 | .47 | 17 | 22 | | FT | 749250 | С | 154 | .55 | .13 | .22 | .55 | .10 | .00 | .31 | .13 | .00 | .31 | | FT | 751420 | С | 154 | .68 | .11 | .10 | .68 | .10 | .00 | .36 | 01 | .11 | .36 | | FT | 751421 | Α | 177 | .60 | .60 | .16 | .20 | .03 | .00 | .57 | .57 | 21 | 30 | | FT | 751422 | В | 154 | .66 | .11 | .66 | .13 | .10 | .00 | .63 | 19 | .63 | 14 | | FT | 751423 | Α | 154 | .40 | .40 | .13 | .38 | .10 | .00 | .40 | .40 | 06 | .03 | | FT | 751424 | В | 154 | .64 | .09 | .64 | .18 | .10 | .00 | .65 | 06 | .65 | 28 | | | | | | • | rade : | 7 Readi | ng | | | | | | | |------|---------|-----|--------|-----------------|--------|---------|------|-----|-----|-------|-------|--------|-----| | | GENERAL | | COUNTS | | PR | OPORT | IONS | | | | ORREL | ATIONS | 5 | | Туре | Item ID | Key | N | <i>p</i> -value | Α | В | С | - | * | Total | Α | В | С | | OP | 651358 | С | 334 | .76 | .07 | .10 | .76 | .07 | .00 | .55 | 11 | 18 | .55 | | OP | 651360 | Α | 334 | .50 | .50 | .18 | .24 | .08 | .00 | .40 | .40 | 03 | 02 | | OP | 651367 | В | 334 | .66 | .05 | .66 | .21 | .08 | .00 | .68 | 11 | .68 | 28 | | OP | 651374 | С | 334 | .58 | .16 | .19 | .58 | .07 | .00 | .30 | .01 | .04 | .30 | | OP | 651404 | С | 334 | .69 | .14 | .10 | .69 | .08 | .00 | .39 | 05 | .05 | .39 | | OP | 675942 | В | 334 | .64 | .08 | .64 | .21 | .07 | .00 | .54 | 05 | .54 | 21 | | OP | 675960 | Α | 334 | .57 | .57 | .13 | .22 | .07 | .00 | .55 | .55 | 05 | 19 | | OP | 691102 | С | 334 | .68 | .10 | .14 | .68 | .08 | .00 | .49 | 14 | 02 | .49 | | OP | 691103 | Α | 334 | .54 | .54 | .10 | .27 | .08 | .00 | .57 | .57 | 11 | 15 | | OP | 691106 | Α | 334 | .77 | .77 | .05 | .11 | .07 | .00 | .64 | .64 | 13 | 28 | | OP | 691107 | В | 334 | .72 | .06 | .72 | .14 | .07 | .00 | .59 | 20 | .59 | 12 | | OP | 691112 | Α | 334 | .85 | .85 | .04 | .04 | .07 | .00 | .58 | .58 | 11 | 14 | | OP | 707858 | В | 334 | .36 | .17 | .36 | .39 | .08 | .00 | .36 | .05 | .36 | 02 | | OP | 707860 | В | 334 | .39 | .12 | .39 | .41 | .08 | .00 | .44 | 04 | .44 | 03 | | OP | 707862 | В | 334 | .57 | .19 | .57 | .17 | .07 | .00 | .57 | 07 | .57 | 22 | | OP | 707863 | Α | 334 | .68 | .68 | .07 | .17 | .08 | .00 | .62 | .62 | 10 | 22 | | OP | 707864 | Α | 334 | .55 | .55 | .23 | .14 | .08 | .00 | .50 | .50 | .00 | 18 | | OP | 707865 | С | 334 | .59 | .16 | .16 | .59 | .08 | .00 | .44 | 04 | 07 | .44 | | OP | 707866 | В | 334 | .47 | .17 | .47 | .28 | .07 | .00 | .47 | 03 | .47 | 12 | | OP | 707867 | Α | 334 | .72 | .72 | .09 | .11 | .08 | .00 | .65 | .65 | 15 | 23 | | OP | 707868 | В | 334 | .48 | .22 | .48 | .22 | .08 | .00 | .45 | .02 | .45 | 12 | | OP | 707869 | Α | 334 | .70 | .70 | .13 | .10 | .08 | .00 | .62 | .62 | 12 | 22 | | OP | 707872 | С | 334 | .76 | .10 | .06 | .76 | .08 | .00 | .53 | 12 | 05 | .53 | | OP | 707873 | В | 334 | .57 | .11 | .57 | .25 | .07 | .00 | .53 | 05 | .53 | 21 | | OP | 707874 | С | 334 | .51 | .09 | .32 | .51 | .08 | .00 | .25 | 09 | .18 | .25 | | FT | 749172 | С | 167 | .63 | .14 | .14 | .63 | .08 | .00 | .47 | 06 | 09 | .47 | | FT | 749173 | В | 167 | .56 | .11 | .56 | .25 | .08 | .00 | .52 | 01 | .52 | 20 | | FT | 749174 | Α | 167 | .28 | .28 | .21 | .43 | .08 | .00 | .25 | .25 | .02 | .11 | | FT | 749175 | Α | 163 | .66 | .12 | .66 | .15 | .06 | .00 | .58 | 14 | .58 | 20 | | FT | 749176 | С | 167 | .68 | .07 | .17 | .68 | .08 | .00 | .56 | 12 | 16 | .56 | | FT | 749177 | Α | 163 | .39 | .39 | .14 | .41 | .06 | .00 | .20 | .20 | 06 | .16 | | FT | 749222 | В | 163 | .70 | .15 | .70 | .09 | .06 | .00 | .56 | 09 | .56 | 25 | | FT | 749235 | С | 163 | .54 | .11 | .28 | .54 | .07 | .00 | .30 | 22 | .17 | .30 | | FT | 749242 | В | 167 | .54 | .13 | .54 | .25 | .08 | .00 | .55 | .01 | .55 | 24 | | FT | 749243 | В | 163 | .55 | .26 | .55 | .12 | .06 | .00 | .48 | 11 | .48 | 11 | | FT | 749244 | С | 167 | .59 | .13 | .20 | .59 | .08 | .00 | .32 | 01 | .05 | .32 | | FT | 751512 | С | 163 | .52 | .26 | .17 | .52 | .06 | .00 | .15 | .09 | .10 | .15 | | FT | 751513 | Α | 163 | .37 | .37 | .18 | .39 | .06 | .00 | .26 | .26 | .01 | .05 | | | |
| | G | irade : | 7 Readi | ng | | | | | | | |--|---------|---|--------|-----|---------|---------|------|-----|-----|-----|-------|--------|-----| | | GENERAL | | COUNTS | | PR | OPORT | IONS | | | C | ORREL | ATIONS | 6 | | Type Item ID Key N p-value A B C - * Total A B | | | | | | | В | С | | | | | | | FT | 751516 | Α | 167 | .31 | .31 | .17 | .44 | .08 | .00 | .24 | .24 | .09 | .05 | | FT | 751517 | В | 167 | .65 | .07 | .65 | .21 | .07 | .00 | .52 | 10 | .52 | 15 | | FT | 751518 | В | 163 | .33 | .31 | .33 | .31 | .06 | .00 | .22 | .10 | .22 | .02 | | | | | | Gr | ade 8 | Readi | ng | | | | | | | |------|---------|-----|--------|-----------------|-------|-------------------|-------|-----|-----|-------|--------|--------|-----| | | GENERAL | | COUNTS | | PR | OPOR [®] | TIONS | | | C | ORRELA | ATIONS | 5 | | Туре | Item ID | Key | N | <i>p</i> -value | Α | В | С | - | * | Total | Α | В | С | | OP | 651418 | В | 320 | .67 | .15 | .67 | .13 | .05 | .00 | .60 | 19 | .60 | 29 | | OP | 651430 | С | 320 | .76 | .08 | .13 | .76 | .04 | .00 | .54 | 19 | 26 | .54 | | OP | 651434 | В | 320 | .52 | .30 | .52 | .14 | .04 | .00 | .45 | 01 | .45 | 31 | | OP | 651435 | В | 320 | .65 | .10 | .65 | .20 | .04 | .00 | .69 | 19 | .69 | 40 | | ОР | 651445 | С | 320 | .78 | .06 | .11 | .78 | .04 | .00 | .37 | 11 | 06 | .37 | | ОР | 675976 | С | 320 | .83 | .05 | .07 | .83 | .04 | .00 | .58 | 22 | 24 | .58 | | OP | 691114 | Α | 320 | .56 | .56 | .22 | .19 | .04 | .00 | .51 | .51 | 08 | 30 | | OP | 691115 | В | 320 | .73 | .06 | .73 | .17 | .04 | .00 | .59 | 20 | .59 | 31 | | ОР | 691116 | Α | 320 | .47 | .47 | .24 | .24 | .05 | .00 | .47 | .47 | .01 | 30 | | OP | 691117 | С | 320 | .74 | .13 | .08 | .74 | .05 | .00 | .25 | .01 | .00 | .25 | | OP | 691118 | С | 320 | .84 | .07 | .06 | .84 | .03 | .00 | .54 | 23 | 23 | .54 | | OP | 691124 | С | 320 | .80 | .09 | .08 | .80 | .04 | .00 | .50 | 18 | 21 | .50 | | OP | 691129 | Α | 320 | .56 | .56 | .18 | .21 | .04 | .00 | .48 | .48 | 05 | 28 | | OP | 707824 | С | 320 | .45 | .19 | .32 | .45 | .04 | .00 | .13 | 05 | .12 | .13 | | OP | 707825 | С | 320 | .58 | .21 | .17 | .58 | .04 | .00 | .30 | 08 | 04 | .30 | | OP | 707826 | В | 320 | .60 | .12 | .60 | .24 | .04 | .00 | .58 | 12 | .58 | 32 | | OP | 707827 | Α | 320 | .37 | .37 | .25 | .33 | .04 | .00 | .36 | .36 | .08 | 2 | | ОР | 707828 | Α | 320 | .65 | .65 | .10 | .21 | .04 | .00 | .59 | .59 | 16 | 30 | | OP | 707829 | Α | 320 | .53 | .53 | .13 | .29 | .04 | .00 | .49 | .49 | 10 | 22 | | ОР | 707830 | В | 320 | .61 | .27 | .61 | .08 | .04 | .00 | .42 | 20 | .42 | 00 | | OP | 707831 | Α | 320 | .68 | .68 | .12 | .16 | .04 | .00 | .51 | .51 | 11 | 28 | | OP | 707834 | В | 320 | .72 | .08 | .72 | .16 | .04 | .00 | .66 | 15 | .66 | 40 | | OP | 707835 | С | 320 | .67 | .17 | .12 | .67 | .04 | .00 | .20 | .00 | .01 | .20 | | OP | 707838 | В | 320 | .34 | .31 | .34 | .31 | .04 | .00 | .32 | .18 | .32 | 29 | | OP | 707839 | В | 320 | .45 | .20 | .45 | .31 | .05 | .00 | .38 | .06 | .38 | 22 | | FT | 751448 | В | 150 | .43 | .27 | .43 | .25 | .05 | .00 | .48 | 18 | .48 | 1 | | FT | 751449 | С | 150 | .73 | .09 | .13 | .73 | .05 | .00 | .45 | 21 | 09 | .45 | | FT | 751451 | С | 167 | .75 | .11 | .09 | .75 | .04 | .00 | .50 | 22 | 19 | .50 | | FT | 751452 | Α | 167 | .59 | .59 | .19 | .19 | .04 | .00 | .59 | .59 | 11 | 40 | | FT | 751453 | Α | 167 | .65 | .65 | .11 | .21 | .04 | .00 | .51 | .51 | 10 | 32 | | | | | | Gr | ade 8 | Readi | ng | | | | | | | |------|---------|-----|--------|-----------------|-------|-------------------|-------|-----|-----|-------|-------|--------|-----| | | GENERAL | | COUNTS | | PR | OPOR [®] | TIONS | | | C | ORREL | ATIONS | | | Туре | Item ID | Key | N | <i>p</i> -value | Α | В | С | • | * | Total | Α | В | С | | FT | 751454 | С | 150 | .69 | .16 | .11 | .69 | .05 | .00 | .54 | 21 | 22 | .54 | | FT | 751455 | В | 150 | .32 | .29 | .32 | .35 | .05 | .00 | .29 | .09 | .29 | 14 | | FT | 751456 | С | 150 | .66 | .13 | .17 | .66 | .05 | .00 | .41 | 16 | 08 | .41 | | FT | 751458 | В | 167 | .75 | .06 | .75 | .14 | .04 | .00 | .66 | 20 | .66 | 42 | | FT | 751459 | С | 167 | .46 | .33 | .17 | .46 | .04 | .00 | .21 | .12 | 19 | .21 | | FT | 751461 | В | 167 | .54 | .19 | .54 | .23 | .04 | .00 | .54 | 07 | .54 | 38 | | FT | 751462 | Α | 150 | .55 | .55 | .14 | .26 | .05 | .00 | .54 | .54 | 19 | 22 | | FT | 751463 | В | 167 | .37 | .23 | .37 | .36 | .04 | .00 | .24 | 04 | .24 | 04 | | FT | 751464 | Α | 150 | .63 | .63 | .09 | .23 | .05 | .00 | .56 | .56 | 16 | 28 | | FT | 751465 | С | 167 | .41 | .29 | .26 | .41 | .04 | .00 | 09 | .19 | .09 | 09 | | FT | 751467 | Α | 150 | .39 | .39 | .25 | .31 | .05 | .00 | .32 | .32 | 01 | 10 | | | | | | G | rade 1 | 1 Read | ling | | | | | | | |------|---------|-----|--------|-----------------|--------|--------|------|-----|-----|-------|--------|-------|-----| | | GENERAL | | COUNTS | | PR | OPORT | IONS | | | C | ORRELA | TIONS | | | Туре | Item ID | Key | N | <i>p</i> -value | Α | В | С | - | * | Total | Α | В | С | | OP | 651429 | С | 293 | .76 | .11 | .05 | .76 | .08 | .00 | .55 | 13 | 12 | .55 | | OP | 651440 | Α | 293 | .45 | .45 | .20 | .25 | .10 | .00 | .43 | .43 | .06 | 06 | | OP | 651448 | В | 293 | .57 | .10 | .57 | .26 | .08 | .00 | .59 | 05 | .59 | 22 | | OP | 651450 | С | 293 | .63 | .16 | .12 | .63 | .10 | .00 | .49 | 01 | 08 | .49 | | OP | 651467 | В | 293 | .56 | .17 | .56 | .18 | .09 | .00 | .59 | 03 | .59 | 20 | | OP | 673895 | С | 293 | .75 | .02 | .15 | .75 | .07 | .00 | .63 | 14 | 24 | .63 | | OP | 675987 | В | 293 | .69 | .09 | .69 | .13 | .09 | .00 | .74 | 19 | .74 | 25 | | OP | 691130 | В | 293 | .62 | .11 | .62 | .17 | .10 | .00 | .61 | 14 | .61 | 11 | | OP | 691132 | С | 293 | .67 | .17 | .09 | .67 | .08 | .00 | .39 | .01 | 04 | .39 | | OP | 691135 | В | 293 | .72 | .09 | .72 | .10 | .10 | .00 | .62 | 06 | .62 | 17 | | OP | 691139 | Α | 293 | .79 | .79 | .05 | .08 | .09 | .00 | .70 | .70 | 16 | 23 | | OP | 691140 | Α | 293 | .64 | .64 | .12 | .14 | .09 | .00 | .58 | .58 | .03 | 23 | | OP | 691141 | Α | 293 | .72 | .72 | .06 | .13 | .09 | .00 | .46 | .46 | 04 | .01 | | OP | 691142 | С | 293 | .78 | .08 | .06 | .78 | .09 | .00 | .62 | 09 | 15 | .62 | | OP | 707877 | Α | 293 | .59 | .59 | .06 | .27 | .08 | .00 | .52 | .52 | 17 | 10 | | OP | 707879 | В | 293 | .63 | .08 | .63 | .19 | .09 | .00 | .62 | 07 | .62 | 19 | | OP | 707880 | С | 293 | .46 | .14 | .30 | .46 | .10 | .00 | .35 | 07 | .13 | .35 | | OP | 707882 | В | 293 | .44 | .16 | .44 | .31 | .09 | .00 | .26 | .02 | .26 | .14 | | OP | 707884 | Α | 293 | .60 | .60 | .15 | .15 | .09 | .00 | .64 | .64 | 06 | 24 | | OP | 707886 | С | 293 | .78 | .04 | .08 | .78 | .10 | .00 | .66 | 13 | 15 | .66 | | OP | 707887 | В | 293 | .68 | .08 | .68 | .14 | .09 | .00 | .57 | 06 | .57 | 13 | Nebraska State Accountability Alternate Assessment 2016 Technical Report | | | | | G | rade 1 | 1 Read | ing | | | | | | | |------|---------|-----|--------|-----------------|--------|--------|------|-----|-----|-------|--------|--------|-----| | | GENERAL | | COUNTS | | PR | OPORT | IONS | | | C | ORRELA | ATIONS | | | Туре | Item ID | Key | N | <i>p</i> -value | Α | В | C | 1 | * | Total | Α | В | С | | OP | 707888 | С | 293 | .59 | .13 | .20 | .59 | .08 | .00 | .47 | 11 | 05 | .47 | | OP | 707890 | С | 293 | .47 | .26 | .17 | .47 | .10 | .00 | .19 | .18 | .09 | .19 | | OP | 707891 | Α | 293 | .49 | .49 | .14 | .27 | .09 | .00 | .41 | .41 | .01 | 01 | | OP | 707892 | В | 293 | .73 | .06 | .73 | .12 | .09 | .00 | .70 | 14 | .70 | 23 | | FT | 749178 | Α | 143 | .69 | .69 | .11 | .11 | .08 | .00 | .54 | .54 | .14 | 30 | | FT | 749180 | С | 149 | .73 | .06 | .11 | .73 | .10 | .00 | .68 | 07 | 22 | .68 | | FT | 749181 | В | 143 | .41 | .18 | .41 | .33 | .08 | .00 | .42 | .05 | .42 | 06 | | FT | 749182 | Α | 143 | .69 | .69 | .07 | .15 | .08 | .00 | .61 | .61 | 07 | 19 | | FT | 749183 | С | 143 | .76 | .11 | .05 | .76 | .08 | .00 | .58 | 16 | 01 | .58 | | FT | 749184 | Α | 143 | .43 | .43 | .16 | .32 | .08 | .00 | .45 | .45 | 04 | 04 | | FT | 749236 | В | 143 | .50 | .15 | .50 | .26 | .08 | .00 | .46 | .06 | .46 | 12 | | FT | 749237 | В | 149 | .55 | .19 | .55 | .16 | .09 | .00 | .59 | 04 | .59 | 19 | | FT | 749238 | С | 143 | .69 | .15 | .08 | .69 | .08 | .00 | .46 | 03 | 04 | .46 | | FT | 749248 | Α | 149 | .57 | .57 | .13 | .20 | .10 | .00 | .63 | .63 | 08 | 17 | | FT | 749249 | С | 149 | .35 | .16 | .39 | .35 | .10 | .00 | .18 | .02 | .25 | .18 | | FT | 749252 | С | 149 | .70 | .08 | .12 | .70 | .09 | .00 | .52 | 03 | 07 | .52 | | FT | 749253 | Α | 143 | .81 | .81 | .06 | .05 | .08 | .00 | .69 | .69 | 17 | 17 | | FT | 751400 | В | 149 | .34 | .23 | .34 | .32 | .10 | .00 | .31 | .16 | .31 | .00 | | FT | 751634 | В | 149 | .46 | .15 | .46 | .28 | .11 | .00 | .54 | .10 | .54 | 19 | | FT | 751636 | С | 149 | .52 | .20 | .17 | .52 | .10 | .00 | .31 | .07 | .09 | .31 | # **Appendix G: Mathematics Key Verification and Foil Analysis** | | | | | Gra | ide 3 N | lathem | atics | | | | | | | |------|---------|-----|--------|-----------------|---------|--------|-------|-----|-----|-------|-------|--------|-----| | | GENERAL | | COUNTS | | PR | OPORT | IONS | | | С | ORREL | ATIONS | | | Туре | Item ID | Key | N | <i>p</i> -value | Α | В | С | - | * | Total | Α | В | С | | OP | 650590 | Α | 250 | .60 | .60 | .10 | .12 | .18 | .00 | .66 | .66 | .02 | 06 | | OP | 650591 | С | 250 | .66 | .10 | .08 | .66 | .16 | .00 | .62 | .01 | 09 | .62 | | ОР | 650608 | Α | 250 | .51 | .51 | .08 | .24 | .18 | .00 | .62 | .62 | 03 | .01 | | OP | 650613 | Α | 250 | .51 | .51 | .09 | .22 | .18 | .00 | .59 | .59 | .03 | .02 | | OP | 650661 | С | 250 | .51 | .21 | .11 | .51 | .17 | .00 | .48 | .15 | 03 | .48 | | OP | 676133 | С | 250 | .73 | .05 | .03 | .73 | .18 | .00 | .80 | 12 | 10 | .80 | | ОР | 676139 | Α | 250 | .43 | .43 | .13 | .26 | .18 | .00 | .54 | .54 | .05 | .05 | | OP | 690921 | В | 250 | .72 | .07 | .72 | .06
| .14 | .00 | .74 | 18 | .74 | 15 | | OP | 690922 | В | 250 | .60 | .08 | .60 | .15 | .16 | .00 | .68 | 05 | .68 | 11 | | OP | 690924 | В | 250 | .62 | .06 | .62 | .13 | .18 | .00 | .70 | 04 | .70 | 05 | | OP | 691213 | В | 250 | .44 | .13 | .44 | .26 | .16 | .00 | .52 | 02 | .52 | .06 | | OP | 707612 | Α | 250 | .61 | .61 | .18 | .06 | .15 | .00 | .63 | .63 | 05 | 12 | | OP | 707613 | Α | 250 | .29 | .29 | .11 | .42 | .18 | .00 | .38 | .38 | .09 | .23 | | OP | 707614 | С | 250 | .75 | .03 | .05 | .75 | .17 | .00 | .77 | 09 | 11 | .77 | | OP | 707615 | В | 250 | .47 | .16 | .47 | .19 | .18 | .00 | .61 | .01 | .61 | .02 | | OP | 707617 | Α | 250 | .75 | .75 | .03 | .04 | .18 | .00 | .78 | .78 | 12 | 07 | | OP | 707618 | В | 250 | .39 | .21 | .39 | .23 | .17 | .00 | .43 | .21 | .43 | .00 | | OP | 707621 | С | 250 | .63 | .08 | .11 | .63 | .18 | .00 | .68 | .01 | 07 | .68 | | OP | 707623 | Α | 250 | .37 | .37 | .14 | .31 | .18 | .00 | .54 | .54 | .08 | .06 | | OP | 707624 | В | 250 | .49 | .09 | .49 | .24 | .18 | .00 | .66 | 04 | .66 | 03 | | OP | 707625 | С | 250 | .57 | .10 | .14 | .57 | .19 | .00 | .65 | 01 | 02 | .65 | | OP | 707626 | С | 250 | .60 | .07 | .15 | .60 | .18 | .00 | .63 | 08 | .05 | .63 | | OP | 707627 | С | 250 | .67 | .08 | .10 | .67 | .15 | .00 | .74 | 21 | 11 | .74 | | OP | 707628 | С | 250 | .54 | .16 | .11 | .54 | .18 | .00 | .59 | .04 | .01 | .59 | | OP | 707629 | В | 250 | .40 | .14 | .40 | .30 | .17 | .00 | .50 | .04 | .50 | .09 | | FT | 748785 | Α | 131 | .67 | .67 | .18 | .04 | .11 | .00 | .62 | .62 | 06 | 23 | | FT | 748786 | Α | 115 | .31 | .31 | .08 | .37 | .23 | .00 | .43 | .43 | .06 | .30 | | FT | 748787 | С | 131 | .62 | .09 | .17 | .62 | .12 | .00 | .56 | 11 | 01 | .56 | | FT | 748788 | С | 115 | .35 | .16 | .26 | .35 | .23 | .00 | .40 | .26 | .17 | .40 | | FT | 748789 | С | 131 | .57 | .15 | .15 | .57 | .13 | .00 | .40 | .09 | .05 | .40 | | FT | 748791 | В | 115 | .46 | .20 | .46 | .10 | .23 | .00 | .55 | .13 | .55 | .10 | | FT | 748792 | В | 115 | .54 | .02 | .54 | .21 | .23 | .00 | .76 | 03 | .76 | 05 | | FT | 748794 | Α | 115 | .50 | .50 | .17 | .10 | .23 | .00 | .66 | .66 | .03 | .05 | | FT | 748795 | В | 131 | .53 | .18 | .53 | .17 | .12 | .00 | .54 | 14 | .54 | .06 | | FT | 748796 | Α | 131 | .57 | .57 | .11 | .20 | .12 | .00 | .58 | .58 | 09 | 05 | | FT | 748798 | В | 115 | .60 | .03 | .60 | .13 | .23 | .00 | .80 | 06 | .80 | 07 | | | | | | Gra | de 3 N | lather | natics | | | | | | | |------|---------|---|--------|-----|--------|--------|--------|-----|-----|-----|-------|--------|-----| | | GENERAL | | COUNTS | | PR | OPORT | IONS | | | C | ORREL | ATIONS | | | Туре | Item ID | | | | | | | | С | | | | | | FT | 748799 | Α | 131 | .37 | .37 | .12 | .37 | .13 | .00 | .56 | .56 | 11 | .00 | | FT | 748800 | С | 115 | .56 | .12 | .09 | .56 | .23 | .00 | .67 | .00 | .08 | .67 | | FT | 748801 | В | 131 | .47 | .11 | .47 | .30 | .12 | .00 | .59 | 02 | .59 | 11 | | FT | 748802 | С | 131 | .60 | .07 | .21 | .60 | .12 | .00 | .58 | 12 | 07 | .58 | | FT | 748803 | В | 115 | .44 | .13 | .44 | .19 | .23 | .00 | .59 | .01 | .59 | .16 | | | | | | Gr | ade 4 | Mathe | matics | | | | | | | |------|---------|-----|--------|-----------------|-------|-------|--------|-----|-----|-------|-------|-------|-----| | | GENERAL | - | COUNTS | | PR | OPOR' | TIONS | | | CC | RRELA | TIONS | - | | Туре | Item ID | Key | N | <i>p</i> -value | Α | В | С | - | * | Total | Α | В | С | | OP | 650757 | С | 262 | .66 | .08 | .15 | .66 | .11 | .00 | .58 | .01 | 14 | .58 | | OP | 650766 | Α | 262 | .66 | .66 | .10 | .13 | .11 | .00 | .71 | .71 | 08 | 25 | | OP | 650770 | С | 262 | .68 | .15 | .07 | .68 | .10 | .00 | .57 | 03 | 16 | .57 | | ОР | 650772 | В | 262 | .58 | .15 | .58 | .18 | .10 | .00 | .51 | .08 | .51 | 18 | | ОР | 650774 | В | 262 | .63 | .07 | .63 | .19 | .11 | .00 | .66 | 11 | .66 | 16 | | OP | 650779 | Α | 262 | .69 | .69 | .10 | .12 | .10 | .00 | .69 | .69 | 19 | 16 | | OP | 650783 | В | 262 | .52 | .14 | .52 | .24 | .10 | .00 | .51 | .01 | .51 | 11 | | OP | 650784 | В | 262 | .63 | .07 | .63 | .20 | .10 | .00 | .68 | 10 | .68 | 24 | | OP | 650792 | Α | 262 | .67 | .67 | .07 | .15 | .11 | .00 | .64 | .64 | 16 | 10 | | OP | 650931 | Α | 262 | .43 | .43 | .23 | .24 | .11 | .00 | .48 | .48 | .06 | 08 | | OP | 676143 | В | 262 | .73 | .03 | .73 | .15 | .10 | .00 | .61 | 11 | .61 | 15 | | OP | 676146 | В | 262 | .59 | .10 | .59 | .20 | .11 | .00 | .67 | 16 | .67 | 14 | | OP | 676160 | Α | 262 | .63 | .63 | .08 | .19 | .11 | .00 | .65 | .65 | 05 | 18 | | OP | 676163 | С | 262 | .65 | .15 | .10 | .65 | .11 | .00 | .56 | 07 | 06 | .56 | | OP | 690950 | С | 262 | .69 | .10 | .10 | .69 | .11 | .00 | .56 | 04 | 07 | .56 | | OP | 707631 | С | 262 | .54 | .14 | .21 | .54 | .11 | .00 | .37 | .13 | 01 | .37 | | OP | 707632 | В | 262 | .51 | .14 | .51 | .24 | .11 | .00 | .62 | 06 | .62 | 15 | | OP | 707633 | С | 262 | .69 | .08 | .13 | .69 | .10 | .00 | .54 | 15 | 02 | .54 | | OP | 707634 | С | 262 | .72 | .08 | .10 | .72 | .11 | .00 | .59 | 06 | 09 | .59 | | OP | 707635 | Α | 262 | .42 | .42 | .25 | .21 | .11 | .00 | .46 | .46 | .14 | 15 | | OP | 707636 | Α | 262 | .82 | .82 | .06 | .02 | .10 | .00 | .66 | .66 | 06 | 18 | | OP | 707637 | С | 262 | .76 | .06 | .08 | .76 | .10 | .00 | .58 | 08 | 08 | .58 | | OP | 707638 | Α | 262 | .67 | .67 | .09 | .13 | .11 | .00 | .66 | .66 | 09 | 17 | | OP | 707639 | Α | 262 | .36 | .36 | .18 | .35 | .11 | .00 | .42 | .42 | 03 | .07 | | OP | 707640 | С | 262 | .55 | .11 | .22 | .55 | .11 | .00 | .43 | .02 | .02 | .43 | | OP | 707641 | С | 262 | .68 | .06 | .14 | .68 | .11 | .00 | .55 | 12 | .00 | .55 | | OP | 707642 | Α | 262 | .60 | .60 | .09 | .21 | .11 | .00 | .59 | .59 | 04 | 13 | | | | | | Gra | ade 4 | Mathe | matics | | | | | | | |------|---------|-----|--------|-----------------|-------|-------|--------|-----|-----|-------|-------|-------|-----| | | GENERAL | | COUNTS | | PR | OPOR' | TIONS | | | CO | RRELA | TIONS | | | Туре | Item ID | Key | N | <i>p</i> -value | Α | В | С | 1 | * | Total | Α | В | С | | OP | 707643 | В | 262 | .45 | .17 | .45 | .28 | .10 | .00 | .45 | 02 | .45 | 02 | | OP | 707645 | В | 262 | .74 | .06 | .74 | .09 | .11 | .00 | .68 | 08 | .68 | 20 | | OP | 708810 | Α | 262 | .45 | .45 | .21 | .21 | .12 | .00 | .49 | .49 | .05 | 08 | | FT | 748804 | Α | 125 | .26 | .26 | .31 | .32 | .11 | .00 | .29 | .29 | .28 | 08 | | FT | 748805 | С | 135 | .76 | .06 | .09 | .76 | .10 | .00 | .62 | 11 | 09 | .62 | | FT | 748807 | В | 135 | .68 | .07 | .68 | .16 | .10 | .00 | .76 | 16 | .76 | 28 | | FT | 748809 | Α | 135 | .47 | .47 | .12 | .32 | .10 | .00 | .45 | .45 | 03 | .00 | | FT | 748811 | С | 125 | .74 | .08 | .06 | .74 | .11 | .00 | .54 | 01 | 05 | .54 | | FT | 748812 | Α | 125 | .62 | .62 | .06 | .22 | .11 | .00 | .68 | .68 | 02 | 25 | | FT | 748813 | В | 135 | .30 | .33 | .30 | .27 | .10 | .00 | .41 | .15 | .41 | 10 | | FT | 748814 | С | 125 | .81 | .04 | .04 | .81 | .11 | .00 | .67 | 05 | 18 | .67 | | FT | 748815 | С | 135 | .67 | .11 | .13 | .67 | .10 | .00 | .58 | .02 | 19 | .58 | | FT | 748816 | С | 125 | .65 | .15 | .09 | .65 | .11 | .00 | .54 | .04 | 18 | .54 | | FT | 748817 | Α | 125 | .34 | .34 | .11 | .44 | .11 | .00 | .37 | .37 | .02 | .08 | | FT | 748818 | В | 125 | .30 | .10 | .30 | .49 | .11 | .00 | .32 | .10 | .32 | .09 | | FT | 748819 | В | 135 | .55 | .16 | .55 | .20 | .10 | .00 | .62 | .00 | .62 | 23 | | FT | 748821 | Α | 135 | .53 | .53 | .10 | .27 | .10 | .00 | .48 | .48 | .05 | 09 | | FT | 748822 | В | 135 | .49 | .19 | .49 | .22 | .10 | .00 | .50 | .07 | .50 | 15 | | FT | 748823 | Α | 125 | .65 | .65 | .14 | .10 | .11 | .00 | .61 | .61 | 03 | 21 | | | | | | Gr | ade 5 N | /lathe | matics | | | | | | | |------|---------|-----|--------|-----------------|---------|--------------|--------|-----|-----|-------|--------|-------|-----| | | GENERAL | | COUNTS | | PRO | DPORT | IONS | | | C | ORRELA | TIONS | | | Туре | Item ID | Key | N | <i>p</i> -value | Α | В | С | - | * | Total | Α | В | С | | OP | 650955 | С | 313 | .69 | .09 | .13 | .69 | .09 | .00 | .58 | 12 | 11 | .58 | | OP | 651002 | Α | 313 | .41 | .41 | .19 | .32 | .08 | .00 | .34 | .34 | .10 | 04 | | ОР | 651007 | С | 313 | .78 | .10 | .04 | .78 | .09 | .00 | .46 | .07 | 12 | .46 | | ОР | 651009 | В | 313 | .56 | .20 | .56 | .15 | .08 | .00 | .62 | 12 | .62 | 20 | | OP | 651010 | С | 313 | .70 | .09 | .14 | .70 | .07 | .00 | .51 | 20 | 06 | .51 | | OP | 651017 | В | 313 | .80 | .04 | .80 | .08 | .08 | .00 | .69 | 18 | .69 | 20 | | OP | 651022 | Α | 313 | .53 | .53 | .09 | .29 | .09 | .00 | .48 | .48 | 09 | 04 | | OP | 651025 | С | 313 | .77 | .05 | .10 | .77 | .08 | .00 | .63 | 16 | 15 | .63 | | OP | 651030 | Α | 313 | .44 | .44 | .15 | .32 | .09 | .00 | .45 | .45 | 02 | 03 | | OP | 651039 | В | 313 | .70 | .08 | .70 | .14 | .08 | .00 | .64 | 17 | .64 | 21 | | OP | 673364 | В | 313 | .73 | .06 | .73 | .13 | .08 | .00 | .62 | 17 | .62 | 16 | | OP | 673369 | В | 313 | .39 | .19 | .39 | .34 | .09 | .00 | .48 | 04 | .48 | 05 | | OP | 676194 | Α | 313 | .64 | .64 | .13 | .14 | .09 | .00 | .58 | .58 | 02 | 21 | Nebraska State Accountability Alternate Assessment 2016 Technical Report | | | | | Gra | ade 5 N | /lathe | matics | | | | | | | |------|---------|-----|--------|-----------------|---------|--------|--------|-----|-----|-------|--------|-------|-----| | | GENERAL | | COUNTS | | PRO | PORT | IONS | | | C | ORREL/ | TIONS | | | Туре | Item ID | Key | N | <i>p</i> -value | Α | В | C | | * | Total | Α | В | С | | OP | 676196 | С | 313 | .59 | .14 | .19 | .59 | .09 | .00 | .50 | 06 | 09 | .50 | | OP | 676197 | Α | 313 | .68 | .68 | .10 | .13 | .09 | .00 | .59 | .59 | 09 | 17 | | OP | 676201 | Α | 313 | .72 | .72 | .11 | .10 | .08 | .00 | .63 | .63 | 15 | 18 | | OP | 690951 | Α | 313 | .50 | .50 | .15 | .27 | .08 | .00 | .56 | .56 | 03 | 18 | | OP | 707649 | С | 313 | .81 | .05 | .05 | .81 | .08 | .00 | .62 | 11 | 15 | .62 | | OP | 707650 | В | 313 | .65 | .09 | .65 |
.18 | .08 | .00 | .61 | 13 | .61 | 19 | | OP | 707651 | В | 313 | .67 | .10 | .67 | .14 | .09 | .00 | .59 | 07 | .59 | 17 | | OP | 707652 | С | 313 | .63 | .12 | .17 | .63 | .08 | .00 | .46 | 04 | 08 | .46 | | OP | 707653 | В | 313 | .72 | .08 | .72 | .12 | .08 | .00 | .62 | 19 | .62 | 16 | | OP | 707655 | С | 313 | .42 | .12 | .37 | .42 | .09 | .00 | .26 | 06 | .18 | .26 | | OP | 707659 | В | 313 | .42 | .11 | .42 | .39 | .09 | .00 | .49 | 07 | .49 | 05 | | OP | 707660 | Α | 313 | .60 | .60 | .14 | .16 | .09 | .00 | .55 | .55 | 07 | 13 | | OP | 707662 | Α | 313 | .52 | .52 | .20 | .18 | .09 | .00 | .58 | .58 | 04 | 18 | | OP | 707663 | С | 313 | .53 | .10 | .28 | .53 | .09 | .00 | .36 | 08 | .08 | .36 | | OP | 707664 | С | 313 | .69 | .10 | .14 | .69 | .07 | .00 | .50 | 18 | 03 | .50 | | OP | 707665 | С | 313 | .80 | .06 | .05 | .80 | .09 | .00 | .63 | 19 | 08 | .63 | | OP | 707666 | В | 313 | .54 | .14 | .54 | .23 | .09 | .00 | .46 | .00 | .46 | 08 | | FT | 748824 | В | 171 | .43 | .23 | .43 | .25 | .09 | .00 | .43 | .05 | .43 | 10 | | FT | 748825 | В | 171 | .69 | .21 | .69 | .01 | .09 | .00 | .41 | .04 | .41 | 10 | | FT | 748826 | В | 140 | .41 | .18 | .41 | .33 | .08 | .00 | .44 | 02 | .44 | 06 | | FT | 748827 | В | 140 | .52 | .20 | .52 | .20 | .08 | .00 | .32 | .04 | .32 | .00 | | FT | 748828 | С | 140 | .61 | .11 | .19 | .61 | .08 | .00 | .47 | 06 | 08 | .47 | | FT | 748829 | В | 140 | .50 | .14 | .50 | .29 | .08 | .00 | .47 | 01 | .47 | 11 | | FT | 748830 | В | 171 | .53 | .13 | .53 | .25 | .09 | .00 | .49 | .00 | .49 | 12 | | FT | 748831 | С | 171 | .60 | .13 | .19 | .60 | .09 | .00 | .46 | 11 | .02 | .46 | | FT | 748832 | Α | 140 | .26 | .26 | .25 | .41 | .08 | .00 | .21 | .21 | .08 | .10 | | FT | 748836 | Α | 140 | .60 | .60 | .14 | .18 | .08 | .00 | .55 | .55 | 10 | 14 | | FT | 748837 | В | 171 | .38 | .14 | .38 | .39 | .09 | .00 | .41 | 02 | .41 | .00 | | FT | 748838 | В | 171 | .41 | .27 | .41 | .23 | .09 | .00 | .39 | .14 | .39 | 13 | | FT | 748839 | С | 140 | .69 | .12 | .11 | .69 | .08 | .00 | .57 | 09 | 16 | .57 | | FT | 748841 | В | 171 | .57 | .05 | .57 | .30 | .08 | .00 | .54 | 02 | .54 | 17 | | FT | 748842 | С | 140 | .56 | .14 | .22 | .56 | .08 | .00 | .45 | 11 | 01 | .45 | | FT | 748843 | Α | 171 | .71 | .71 | .11 | .09 | .09 | .00 | .64 | .64 | 11 | 20 | | | | | | Grad | de 6 N | lather | natics | | | | | | | |------|---------|-----|--------|-----------------|--------|--------|--------|-----|-----|-------|-------|--------|-----| | | GENERAL | | COUNTS | | PRC | PORT | IONS | | | (| ORREL | ATIONS | | | Туре | Item ID | Key | N | <i>p</i> -value | Α | В | С | - | * | Total | Α | В | С | | OP | 651322 | С | 332 | .63 | .13 | .19 | .63 | .06 | .00 | .26 | 02 | .05 | .26 | | OP | 651323 | С | 332 | .69 | .13 | .13 | .69 | .05 | .00 | .42 | 09 | 10 | .42 | | OP | 651332 | С | 332 | .70 | .11 | .14 | .70 | .06 | .00 | .34 | 03 | 04 | .34 | | OP | 651334 | С | 332 | .78 | .06 | .10 | .78 | .06 | .00 | .49 | 13 | 14 | .49 | | OP | 651339 | Α | 332 | .43 | .43 | .13 | .38 | .06 | .00 | .42 | .42 | 07 | 09 | | OP | 651341 | С | 332 | .66 | .15 | .14 | .66 | .05 | .00 | .43 | 12 | 14 | .43 | | OP | 651348 | В | 332 | .76 | .08 | .76 | .11 | .05 | .00 | .60 | 20 | .60 | 25 | | OP | 651350 | В | 332 | .77 | .03 | .77 | .14 | .06 | .00 | .54 | 09 | .54 | 21 | | OP | 651353 | Α | 332 | .53 | .53 | .13 | .28 | .06 | .00 | .49 | .49 | 11 | 15 | | OP | 651392 | В | 332 | .59 | .15 | .59 | .20 | .06 | .00 | .56 | 01 | .56 | 32 | | OP | 673372 | Α | 332 | .67 | .67 | .17 | .11 | .05 | .00 | .48 | .48 | 09 | 23 | | OP | 673373 | Α | 332 | .43 | .43 | .16 | .34 | .06 | .00 | .49 | .49 | .03 | 22 | | OP | 676241 | С | 332 | .69 | .08 | .17 | .69 | .06 | .00 | .42 | 22 | .01 | .42 | | OP | 690969 | Α | 332 | .62 | .62 | .12 | .20 | .06 | .00 | .58 | .58 | 15 | 24 | | OP | 690972 | С | 332 | .80 | .06 | .08 | .80 | .06 | .00 | .54 | 13 | 17 | .54 | | OP | 690981 | Α | 332 | .78 | .78 | .06 | .09 | .06 | .00 | .66 | .66 | 18 | 30 | | OP | 707667 | Α | 332 | .61 | .61 | .16 | .17 | .05 | .00 | .51 | .51 | 16 | 15 | | OP | 707668 | В | 332 | .72 | .08 | .72 | .15 | .05 | .00 | .56 | 14 | .56 | 27 | | OP | 707670 | В | 332 | .50 | .10 | .50 | .34 | .06 | .00 | .41 | 03 | .41 | 12 | | OP | 707671 | В | 332 | .53 | .15 | .53 | .27 | .06 | .00 | .39 | 09 | .39 | 05 | | OP | 707672 | С | 332 | .76 | .07 | .12 | .76 | .05 | .00 | .53 | 13 | 21 | .53 | | OP | 707673 | В | 332 | .54 | .12 | .54 | .29 | .05 | .00 | .53 | 08 | .53 | 26 | | OP | 707675 | Α | 332 | .45 | .45 | .17 | .32 | .06 | .00 | .47 | .47 | 08 | 13 | | OP | 707676 | Α | 332 | .58 | .58 | .15 | .22 | .05 | .00 | .53 | .53 | 10 | 25 | | OP | 707677 | Α | 332 | .45 | .45 | .19 | .31 | .06 | .00 | .44 | .44 | 06 | 12 | | OP | 707678 | В | 332 | .64 | .10 | .64 | .20 | .05 | .00 | .45 | 04 | .45 | 19 | | OP | 707679 | С | 332 | .59 | .15 | .20 | .59 | .06 | .00 | .33 | 03 | 04 | .33 | | OP | 707680 | Α | 332 | .48 | .48 | .20 | .26 | .06 | .00 | .44 | .44 | 10 | 08 | | OP | 707683 | В | 332 | .50 | .12 | .50 | .32 | .06 | .00 | .43 | 04 | .43 | 12 | | OP | 707684 | В | 332 | .57 | .10 | .57 | .27 | .06 | .00 | .53 | 08 | .53 | 20 | | FT | 748844 | Α | 179 | .59 | .59 | .10 | .28 | .03 | .00 | .60 | .60 | 22 | 35 | | FT | 748845 | С | 179 | .66 | .13 | .18 | .66 | .03 | .00 | .25 | 23 | .08 | .25 | | FT | 748847 | С | 179 | .60 | .11 | .27 | .60 | .03 | .00 | .20 | 12 | .03 | .20 | | FT | 748848 | В | 152 | .55 | .13 | .55 | .23 | .10 | .00 | .60 | 12 | .60 | 14 | | FT | 748849 | Α | 152 | .33 | .33 | .24 | .33 | .10 | .00 | .34 | .34 | .09 | .00 | | FT | 748851 | В | 152 | .51 | .16 | .51 | .23 | .10 | .00 | .47 | .08 | .47 | 15 | | FT | 748852 | В | 152 | .55 | .14 | .55 | .21 | .10 | .00 | .49 | .00 | .49 | 10 | | | | | | Grad | de 6 N | lather | natics | | | | | | | |------|---------|-----|--------|-----------------|--------|--------|--------|-----|-----|-------|-------|--------|-----| | | GENERAL | | COUNTS | | PRC | PORT | IONS | | | (| ORREL | ATIONS | | | Туре | Item ID | Key | N | <i>p</i> -value | Α | В | С | 1 | * | Total | Α | В | С | | FT | 748855 | Α | 179 | .41 | .41 | .11 | .45 | .03 | .00 | .40 | .40 | 03 | 23 | | FT | 748856 | В | 179 | .42 | .34 | .42 | .21 | .03 | .00 | .42 | 11 | .42 | 20 | | FT | 748858 | В | 152 | .38 | .24 | .38 | .29 | .09 | .00 | .47 | .04 | .47 | 11 | | FT | 748859 | Α | 152 | .36 | .36 | .16 | .39 | .09 | .00 | .43 | .43 | .05 | 06 | | FT | 748860 | Α | 152 | .66 | .66 | .12 | .12 | .10 | .00 | .73 | .73 | 18 | 26 | | FT | 748861 | С | 179 | .67 | .15 | .16 | .67 | .03 | .00 | .31 | 17 | 03 | .31 | | FT | 748862 | С | 179 | .87 | .05 | .06 | .87 | .03 | .00 | .50 | 16 | 28 | .50 | | FT | 748863 | С | 179 | .59 | .16 | .22 | .59 | .03 | .00 | 06 | .09 | .17 | 06 | | FT | 748864 | С | 152 | .55 | .20 | .16 | .55 | .09 | .00 | .45 | .01 | 09 | .45 | | | | | | Gra | de 7 M | athem | atics | | | | | | | |------|---------|-----|--------|-----------------|--------|-------|-------|-----|-----|-------|--------|--------|-----| | | GENERAL | | COUNTS | | | PORT | | | | C | ORRELA | ATIONS | } | | Туре | Item ID | Key | N | <i>p</i> -value | Α | В | С | - | * | Total | Α | В | С | | OP | 651845 | С | 342 | .63 | .16 | .13 | .63 | .08 | .00 | .58 | 20 | 10 | .58 | | OP | 651852 | Α | 342 | .73 | .73 | .06 | .12 | .08 | .00 | .59 | .59 | 09 | 19 | | OP | 652047 | Α | 342 | .75 | .75 | .09 | .09 | .08 | .00 | .65 | .65 | 23 | 19 | | OP | 652117 | С | 342 | .61 | .15 | .15 | .61 | .08 | .00 | .39 | 06 | .03 | .39 | | OP | 652118 | В | 342 | .74 | .06 | .74 | .13 | .08 | .00 | .63 | 16 | .63 | 21 | | OP | 652120 | С | 342 | .66 | .08 | .20 | .66 | .07 | .00 | .39 | 18 | .03 | .39 | | OP | 652122 | Α | 342 | .66 | .66 | .11 | .15 | .08 | .00 | .63 | .63 | 16 | 22 | | OP | 652129 | С | 342 | .76 | .09 | .07 | .76 | .08 | .00 | .62 | 20 | 13 | .62 | | OP | 652131 | С | 342 | .72 | .10 | .10 | .72 | .08 | .00 | .53 | 14 | 09 | .53 | | OP | 652140 | С | 342 | .63 | .13 | .15 | .63 | .08 | .00 | .55 | 07 | 18 | .55 | | OP | 690983 | Α | 342 | .52 | .52 | .20 | .21 | .07 | .00 | .55 | .55 | .00 | 27 | | OP | 690986 | В | 342 | .61 | .11 | .61 | .20 | .08 | .00 | .60 | 12 | .60 | 21 | | OP | 690991 | В | 342 | .75 | .07 | .75 | .10 | .08 | .00 | .65 | 16 | .65 | 25 | | OP | 690992 | С | 342 | .70 | .12 | .10 | .70 | .08 | .00 | .61 | 17 | 19 | .61 | | OP | 690993 | В | 342 | .42 | .15 | .42 | .34 | .08 | .00 | .38 | 03 | .38 | .01 | | OP | 690995 | В | 342 | .63 | .08 | .63 | .21 | .07 | .00 | .61 | 13 | .61 | 26 | | OP | 690997 | С | 342 | .80 | .06 | .05 | .80 | .08 | .00 | .64 | 16 | 19 | .64 | | OP | 707685 | В | 342 | .48 | .19 | .48 | .25 | .08 | .00 | .43 | .00 | .43 | 11 | | ОР | 707686 | Α | 342 | .49 | .49 | .17 | .26 | .08 | .00 | .56 | .56 | 06 | 17 | | OP | 707689 | Α | 342 | .51 | .51 | .12 | .28 | .08 | .00 | .61 | .61 | 14 | 18 | | OP | 707690 | В | 342 | .58 | .07 | .58 | .27 | .07 | .00 | .56 | 08 | .56 | 20 | | OP | 707691 | С | 342 | .46 | .23 | .23 | .46 | .08 | .00 | .37 | .11 | 12 | .37 | | OP | 707692 | В | 342 | .55 | .16 | .55 | .22 | .07 | .00 | .53 | 07 | .53 | 18 | | | | | | Gra | de 7 M | athem | natics | | | | | | | |------|---------|-----|--------|-----------------|--------|-------|--------|-----|-----|-------|-------|--------|-----| | | GENERAL | | COUNTS | | PRC | PORT | IONS | | | С | ORREL | ATIONS | | | Туре | Item ID | Key | N | <i>p</i> -value | Α | В | C | | * | Total | Α | В | С | | OP | 707693 | Α | 342 | .51 | .51 | .21 | .20 | .08 | .00 | .52 | .52 | 06 | 16 | | OP | 707694 | Α | 342 | .40 | .40 | .07 | .44 | .09 | .00 | .36 | .36 | 14 | .09 | | OP | 707695 | С | 342 | .66 | .15 | .10 | .66 | .09 | .00 | .56 | 11 | 15 | .56 | | OP | 707697 | В | 342 | .55 | .14 | .55 | .23 | .07 | .00 | .38 | .07 | .38 | 14 | | OP | 707698 | В | 342 | .50 | .24 | .50 | .19 | .07 | .00 | .50 | .00 | .50 | 24 | | OP | 707699 | С | 342 | .62 | .11 | .19 | .62 | .08 | .00 | .39 | 02 | 05 | .39 | | OP | 708811 |
Α | 342 | .41 | .41 | .11 | .40 | .08 | .00 | .36 | .36 | 05 | .04 | | FT | 748865 | С | 173 | .54 | .24 | .13 | .54 | .09 | .00 | .52 | 03 | 19 | .52 | | FT | 748866 | С | 165 | .66 | .13 | .15 | .66 | .06 | .00 | .50 | 22 | 05 | .50 | | FT | 748868 | В | 173 | .35 | .17 | .35 | .39 | .09 | .00 | .33 | .04 | .33 | .01 | | FT | 748869 | Α | 165 | .75 | .75 | .12 | .08 | .06 | .00 | .60 | .60 | 14 | 25 | | FT | 748870 | В | 165 | .68 | .16 | .10 | .68 | .06 | .00 | .50 | 15 | 09 | .50 | | FT | 748871 | С | 173 | .58 | .16 | .16 | .58 | .09 | .00 | .48 | 09 | 07 | .48 | | FT | 748873 | В | 173 | .31 | .22 | .31 | .38 | .09 | .00 | .37 | .04 | .37 | 02 | | FT | 748875 | Α | 165 | .41 | .41 | .32 | .22 | .06 | .00 | .31 | .31 | .09 | 11 | | FT | 748876 | Α | 173 | .40 | .40 | .19 | .32 | .09 | .00 | .41 | .41 | .05 | 09 | | FT | 748877 | В | 165 | .56 | .17 | .56 | .21 | .06 | .00 | .45 | 05 | .45 | 14 | | FT | 748878 | В | 173 | .40 | .13 | .40 | .37 | .09 | .00 | .49 | 14 | .49 | 03 | | FT | 748879 | С | 165 | .66 | .10 | .18 | .66 | .06 | .00 | .47 | 11 | 11 | .47 | | FT | 748880 | С | 173 | .76 | .08 | .08 | .76 | .09 | .00 | .56 | 16 | 12 | .56 | | FT | 748881 | Α | 165 | .58 | .58 | .14 | .21 | .07 | .00 | .50 | .50 | .02 | 25 | | FT | 748883 | В | 165 | .42 | .14 | .42 | .38 | .06 | .00 | .29 | 14 | .29 | .12 | | FT | 748884 | Α | 173 | .53 | .53 | .13 | .24 | .09 | .00 | .54 | .54 | 09 | 14 | | | | | | Gra | de 8 N | lather | natics | | | | | | | |------|---------|-----|--------|-----------------|--------|--------|--------|-----|-----|-------|--------|-------|-----| | | GENERAL | | COUNTS | | PRC | PORT | IONS | | | C | ORRELA | TIONS | | | Туре | Item ID | Key | N | <i>p</i> -value | Α | В | С | - | * | Total | Α | В | С | | OP | 652152 | Α | 328 | .71 | .71 | .08 | .17 | .05 | .00 | .54 | .54 | 14 | 25 | | OP | 652162 | С | 328 | .76 | .08 | .12 | .76 | .05 | .00 | .56 | 18 | 24 | .56 | | OP | 652167 | В | 328 | .70 | .04 | .70 | .21 | .05 | .00 | .65 | 20 | .65 | 35 | | OP | 652170 | С | 328 | .63 | .15 | .17 | .63 | .05 | .00 | .30 | 04 | 03 | .30 | | OP | 652182 | В | 328 | .65 | .07 | .65 | .24 | .04 | .00 | .65 | 19 | .65 | 36 | | OP | 652186 | В | 328 | .44 | .16 | .44 | .35 | .05 | .00 | .42 | 07 | .42 | 14 | | OP | 652188 | Α | 328 | .80 | .80 | .06 | .10 | .05 | .00 | .57 | .57 | 21 | 22 | | OP | 652192 | В | 328 | .41 | .28 | .41 | .27 | .05 | .00 | .45 | .04 | .45 | 27 | | OP | 652196 | С | 328 | .72 | .15 | .09 | .72 | .05 | .00 | .51 | 17 | 19 | .51 | Nebraska State Accountability Alternate Assessment 2016 Technical Report | | | | | Grad | de 8 N | lather | natics | | | | | | | |------|---------|-----|--------|-----------------|--------|--------|--------|-----|-----|-------|--------|-------|-----| | | GENERAL | | COUNTS | | PRC | PORT | IONS | | | C | ORRELA | TIONS | | | Туре | Item ID | Key | N | <i>p</i> -value | Α | В | С | - | * | Total | Α | В | С | | OP | 652199 | Α | 328 | .48 | .48 | .21 | .26 | .05 | .00 | .49 | .49 | 06 | 23 | | OP | 673378 | С | 328 | .60 | .19 | .17 | .60 | .04 | .00 | .22 | .07 | 08 | .22 | | OP | 676333 | С | 328 | .74 | .06 | .15 | .74 | .05 | .00 | .52 | 20 | 17 | .52 | | OP | 690999 | Α | 328 | .71 | .71 | .09 | .16 | .05 | .00 | .57 | .57 | 09 | 32 | | OP | 691002 | С | 328 | .81 | .06 | .09 | .81 | .04 | .00 | .46 | 14 | 17 | .46 | | OP | 691005 | В | 328 | .76 | .04 | .76 | .16 | .05 | .00 | .55 | 16 | .55 | 25 | | OP | 691010 | Α | 328 | .39 | .39 | .27 | .29 | .05 | .00 | .35 | .35 | .08 | 20 | | OP | 691012 | С | 328 | .75 | .12 | .09 | .75 | .04 | .00 | .40 | 11 | 12 | .40 | | OP | 707702 | В | 328 | .50 | .13 | .50 | .32 | .05 | .00 | .45 | 10 | .45 | 15 | | OP | 707703 | В | 328 | .55 | .16 | .55 | .24 | .05 | .00 | .51 | 03 | .51 | 30 | | OP | 707704 | В | 328 | .68 | .09 | .68 | .18 | .05 | .00 | .61 | 18 | .61 | 31 | | OP | 707706 | С | 328 | .70 | .13 | .12 | .70 | .05 | .00 | .40 | 08 | 13 | .40 | | OP | 707707 | В | 328 | .74 | .07 | .74 | .15 | .04 | .00 | .66 | 16 | .66 | 39 | | OP | 707708 | Α | 328 | .49 | .49 | .20 | .26 | .05 | .00 | .51 | .51 | 01 | 30 | | OP | 707710 | Α | 328 | .56 | .56 | .21 | .19 | .04 | .00 | .55 | .55 | 07 | 36 | | OP | 707711 | В | 328 | .44 | .11 | .44 | .40 | .05 | .00 | .47 | 16 | .47 | 13 | | OP | 707713 | С | 328 | .77 | .09 | .09 | .77 | .04 | .00 | .43 | 08 | 18 | .43 | | OP | 707714 | Α | 328 | .62 | .62 | .07 | .26 | .04 | .00 | .57 | .57 | 09 | 35 | | OP | 707715 | С | 328 | .57 | .14 | .25 | .57 | .04 | .00 | .23 | 07 | .03 | .23 | | OP | 707716 | С | 328 | .56 | .08 | .32 | .56 | .04 | .00 | .29 | 14 | .00 | .29 | | OP | 707718 | Α | 328 | .75 | .75 | .19 | .02 | .04 | .00 | .54 | .54 | 27 | 17 | | FT | 749052 | С | 173 | .68 | .14 | .14 | .68 | .03 | .00 | .40 | 25 | 04 | .40 | | FT | 749054 | Α | 173 | .45 | .45 | .31 | .21 | .03 | .00 | .43 | .43 | .03 | 35 | | FT | 749056 | С | 152 | .57 | .16 | .23 | .57 | .05 | .00 | .55 | 22 | 18 | .55 | | FT | 749057 | С | 173 | .71 | .12 | .14 | .71 | .03 | .00 | .38 | 18 | 09 | .38 | | FT | 749058 | В | 152 | .45 | .17 | .45 | .34 | .05 | .00 | .42 | .01 | .42 | 21 | | FT | 749059 | С | 152 | .72 | .14 | .09 | .72 | .05 | .00 | .50 | 23 | 10 | .50 | | FT | 749060 | В | 173 | .39 | .29 | .39 | .28 | .03 | .00 | .26 | .11 | .26 | 20 | | FT | 749061 | Α | 152 | .84 | .84 | .09 | .03 | .05 | .00 | .60 | .60 | 24 | 24 | | FT | 749062 | В | 173 | .70 | .06 | .70 | .20 | .03 | .00 | .53 | 27 | .53 | 23 | | FT | 749063 | Α | 152 | .78 | .78 | .05 | .13 | .05 | .00 | .64 | .64 | 18 | 34 | | FT | 749065 | В | 173 | .36 | .31 | .36 | .29 | .03 | .00 | .39 | 01 | .39 | 22 | | FT | 749066 | С | 152 | .61 | .19 | .15 | .61 | .05 | .00 | .30 | 11 | .04 | .30 | | FT | 749068 | С | 173 | .66 | .14 | .16 | .66 | .03 | .00 | .38 | 09 | 18 | .38 | | FT | 749069 | Α | 152 | .73 | .73 | .07 | .15 | .05 | .00 | .68 | .68 | 22 | 37 | | FT | 749070 | Α | 152 | .55 | .55 | .20 | .21 | .05 | .00 | .56 | .56 | 04 | 36 | | FT | 749071 | С | 173 | .61 | .23 | .13 | .61 | .03 | .00 | .42 | 17 | 15 | .42 | | | | | | Grad | le 11 N | Mathe | matics | | | | | | | |------|---------|-----|--------|-----------------|---------|-------------------|--------|-----|-----|-------|-------|--------|-----| | | GENERAL | | COUNTS | | PR | OPOR ⁻ | TIONS | | | С | ORREL | ATIONS | | | Туре | Item ID | Key | N | <i>p</i> -value | Α | В | С | - | * | Total | Α | В | С | | OP | 651135 | Α | 312 | .82 | .82 | .05 | .04 | .09 | .00 | .75 | .75 | 20 | 20 | | OP | 651138 | Α | 312 | .77 | .77 | .05 | .08 | .09 | .00 | .65 | .65 | 15 | 14 | | OP | 651164 | С | 312 | .52 | .16 | .23 | .52 | .09 | .00 | .34 | .05 | .04 | .34 | | OP | 651166 | В | 312 | .57 | .17 | .57 | .18 | .08 | .00 | .49 | 04 | .49 | 15 | | OP | 651168 | С | 312 | .75 | .10 | .06 | .75 | .09 | .00 | .61 | 19 | 11 | .61 | | OP | 651169 | В | 312 | .66 | .12 | .66 | .13 | .09 | .00 | .64 | 07 | .64 | 22 | | OP | 651173 | В | 312 | .76 | .08 | .76 | .07 | .09 | .00 | .65 | 13 | .65 | 16 | | OP | 651183 | С | 312 | .69 | .11 | .11 | .69 | .09 | .00 | .60 | 11 | 12 | .60 | | OP | 651198 | Α | 312 | .54 | .54 | .13 | .23 | .09 | .00 | .54 | .54 | 09 | 08 | | OP | 651227 | С | 312 | .78 | .04 | .09 | .78 | .09 | .00 | .67 | 15 | 16 | .67 | | OP | 651245 | Α | 312 | .68 | .68 | .13 | .11 | .09 | .00 | .60 | .60 | 07 | 18 | | OP | 651311 | Α | 312 | .67 | .67 | .10 | .14 | .09 | .00 | .66 | .66 | 13 | 19 | | OP | 651319 | В | 312 | .69 | .13 | .69 | .09 | .09 | .00 | .58 | 04 | .58 | 21 | | OP | 651320 | В | 312 | .56 | .13 | .56 | .21 | .09 | .00 | .61 | 16 | .61 | 12 | | OP | 673387 | В | 312 | .60 | .11 | .60 | .20 | .09 | .00 | .57 | 04 | .57 | 16 | | OP | 676343 | Α | 312 | .64 | .64 | .12 | .15 | .09 | .00 | .64 | .64 | 12 | 18 | | OP | 676351 | С | 312 | .78 | .04 | .09 | .78 | .09 | .00 | .67 | 16 | 17 | .67 | | OP | 676354 | Α | 312 | .59 | .59 | .14 | .18 | .09 | .00 | .56 | .56 | 02 | 18 | | OP | 691024 | С | 312 | .79 | .08 | .05 | .79 | .08 | .00 | .65 | 16 | 21 | .65 | | OP | 691026 | С | 312 | .70 | .12 | .09 | .70 | .09 | .00 | .61 | 12 | 12 | .61 | | OP | 691027 | В | 312 | .59 | .07 | .59 | .26 | .08 | .00 | .49 | 09 | .49 | 07 | | OP | 707721 | С | 312 | .46 | .20 | .25 | .46 | .09 | .00 | .38 | .03 | .00 | .38 | | OP | 707722 | В | 312 | .63 | .18 | .63 | .11 | .08 | .00 | .57 | 10 | .57 | 20 | | OP | 707724 | В | 312 | .44 | .06 | .44 | .41 | .08 | .00 | .36 | 09 | .36 | .06 | | OP | 707725 | С | 312 | .68 | .05 | .18 | .68 | .09 | .00 | .46 | 11 | .02 | .46 | | OP | 707727 | В | 312 | .64 | .10 | .64 | .17 | .09 | .00 | .67 | 11 | .67 | 21 | | OP | 707728 | Α | 312 | .45 | .45 | .29 | .17 | .09 | .00 | .42 | .42 | .08 | 12 | | OP | 707729 | В | 312 | .53 | .06 | .53 | .31 | .09 | .00 | .59 | 09 | .59 | 13 | | OP | 707732 | В | 312 | .56 | .20 | .56 | .15 | .09 | .00 | .52 | .01 | .52 | 18 | | OP | 707734 | С | 312 | .49 | .23 | .19 | .49 | .09 | .00 | .29 | .16 | 05 | .29 | | FT | 749073 | В | 157 | .56 | .08 | .56 | .28 | .08 | .00 | .64 | 03 | .64 | 26 | | FT | 749075 | В | 157 | .54 | .28 | .54 | .10 | .08 | .00 | .31 | .19 | .31 | 17 | | FT | 749076 | С | 154 | .44 | .16 | .31 | .44 | .10 | .00 | .28 | .01 | .14 | .28 | | FT | 749077 | С | 157 | .62 | .14 | .17 | .62 | .08 | .00 | .49 | 06 | 08 | .49 | | FT | 749078 | Α | 154 | .81 | .81 | .05 | .04 | .10 | .00 | .67 | .67 | 06 | 23 | | FT | 749079 | Α | 154 | .44 | .44 | .26 | .20 | .10 | .00 | .44 | .44 | 04 | .01 | | FT | 749080 | В | 154 | .41 | .23 | .41 | .27 | .10 | .00 | .41 | .13 | .41 | 11 | | FT | 749081 | В | 157 | .54 | .07 | .54 | .32 | .08 | .00 | .63 | 11 | .63 | 21 | | | | | | Grad | le 11 ľ | Vlathe | matics | | | | | | | |------|---------|-----|--------|-----------------|---------|-------------------|--------|-----|-----|-------|-------|--------|-----| | | GENERAL | | COUNTS | | PR | OPOR [®] | TIONS | | | C | ORREL | ATIONS | | | Туре | Item ID | Key | N | <i>p</i> -value | Α | В | C | 1 | * | Total | Α | В | С | | FT | 749083 | С | 157 | .65 | .15 | .12
| .65 | .08 | .00 | .50 | 09 | 06 | .50 | | FT | 749084 | С | 154 | .77 | .04 | .08 | .77 | .10 | .01 | .71 | 19 | 22 | .71 | | FT | 749085 | В | 154 | .58 | .16 | .58 | .16 | .10 | .00 | .50 | .05 | .50 | 17 | | FT | 749086 | Α | 157 | .20 | .20 | .43 | .29 | .08 | .00 | .13 | .13 | .33 | 06 | | FT | 749087 | В | 157 | .48 | .18 | .48 | .27 | .08 | .00 | .50 | .02 | .50 | 15 | | FT | 749088 | Α | 154 | .39 | .39 | .32 | .18 | .10 | .00 | .51 | .51 | 01 | 09 | | FT | 749089 | В | 154 | .42 | .18 | .42 | .30 | .10 | .00 | .35 | .02 | .35 | .07 | | FT | 749091 | В | 157 | .41 | .03 | .41 | .48 | .08 | .00 | .43 | 05 | .43 | 03 | # **Appendix H: Science Key Verification and Foil Analysis** | | | | | Gr | ade 5 | Scienc | e | | | | | | | |------|---------|-----|--------|-----------------|-------|--------|------|-----|-----|-------|-------|--------|-----| | | GENERAL | | COUNTS | | PRO | PORT | IONS | | | C | ORREL | ATIONS | | | Туре | Item ID | Key | N | <i>p</i> -value | Α | В | С | - | * | Total | Α | В | С | | OP | 651050 | В | 309 | .54 | .11 | .54 | .26 | .09 | .00 | .50 | 08 | .50 | 04 | | OP | 651078 | С | 309 | .50 | .22 | .21 | .50 | .07 | .00 | .32 | .05 | 02 | .32 | | OP | 651113 | Α | 309 | .65 | .65 | .10 | .16 | .09 | .00 | .67 | .67 | 11 | 22 | | OP | 676460 | С | 309 | .65 | .14 | .14 | .65 | .08 | .00 | .46 | .00 | 10 | .46 | | OP | 676461 | С | 309 | .70 | .06 | .16 | .70 | .08 | .00 | .46 | 09 | 02 | .46 | | OP | 691146 | В | 309 | .58 | .13 | .58 | .21 | .09 | .00 | .55 | 01 | .55 | 17 | | OP | 691147 | В | 309 | .69 | .06 | .69 | .17 | .08 | .00 | .64 | 11 | .64 | 22 | | OP | 691149 | С | 309 | .62 | .17 | .13 | .62 | .08 | .00 | .40 | 02 | .00 | .40 | | OP | 691150 | В | 309 | .43 | .22 | .43 | .26 | .08 | .00 | .45 | 10 | .45 | .04 | | OP | 691151 | Α | 309 | .74 | .74 | .07 | .10 | .09 | .00 | .66 | .66 | 14 | 18 | | OP | 691154 | Α | 309 | .70 | .70 | .08 | .13 | .09 | .00 | .71 | .71 | 12 | 28 | | OP | 691155 | В | 309 | .49 | .33 | .49 | .09 | .09 | .00 | .54 | 04 | .54 | 17 | | OP | 691158 | Α | 309 | .47 | .47 | .33 | .12 | .08 | .00 | .41 | .41 | .13 | 24 | | OP | 691159 | Α | 309 | .72 | .72 | .09 | .10 | .08 | .00 | .69 | .69 | 18 | 22 | | OP | 691212 | Α | 309 | .88 | .88 | .03 | .01 | .08 | .00 | .60 | .60 | 03 | 03 | | OP | 707414 | Α | 309 | .75 | .75 | .09 | .08 | .07 | .00 | .65 | .65 | 18 | 21 | | OP | 707417 | В | 309 | .51 | .17 | .51 | .23 | .08 | .00 | .55 | 02 | .55 | 17 | | OP | 707419 | С | 309 | .69 | .11 | .12 | .69 | .08 | .00 | .58 | 09 | 16 | .58 | | OP | 707420 | С | 309 | .56 | .16 | .20 | .56 | .08 | .00 | .34 | .12 | 05 | .34 | | OP | 707421 | В | 309 | .55 | .15 | .55 | .22 | .09 | .00 | .33 | .09 | .33 | .00 | | OP | 707422 | Α | 309 | .82 | .82 | .06 | .05 | .08 | .00 | .68 | .68 | 16 | 21 | | OP | 707426 | Α | 309 | .48 | .48 | .19 | .25 | .08 | .00 | .45 | .45 | 01 | 07 | | OP | 707428 | С | 309 | .72 | .08 | .11 | .72 | .08 | .00 | .57 | 11 | 12 | .57 | | OP | 707429 | В | 309 | .78 | .04 | .78 | .09 | .08 | .00 | .67 | 16 | .67 | 19 | | OP | 707430 | С | 309 | .73 | .08 | .10 | .73 | .09 | .00 | .57 | 09 | 09 | .57 | | FT | 748726 | В | 170 | .66 | .02 | .66 | .23 | .09 | .00 | .61 | 06 | .61 | 19 | | FT | 748727 | Α | 138 | .71 | .71 | .12 | .09 | .09 | .00 | .67 | .67 | 16 | 19 | | FT | 748728 | В | 138 | .70 | .10 | .70 | .11 | .09 | .00 | .66 | 21 | .66 | 11 | | FT | 748729 | С | 170 | .59 | .17 | .15 | .59 | .09 | .00 | .49 | .05 | 18 | .49 | | FT | 748732 | С | 170 | .78 | .02 | .11 | .78 | .09 | .00 | .66 | 07 | 20 | .66 | | FT | 748733 | В | 138 | .57 | .10 | .57 | .24 | .09 | .00 | .56 | 12 | .56 | 10 | | FT | 748734 | Α | 138 | .37 | .37 | .17 | .38 | .09 | .00 | .34 | .34 | .05 | .03 | | FT | 748735 | Α | 170 | .45 | .45 | .08 | .38 | .09 | .00 | .57 | .57 | 13 | 10 | | FT | 748736 | В | 170 | .64 | .09 | .64 | .19 | .09 | .00 | .64 | 07 | .64 | 22 | | FT | 748738 | С | 170 | .77 | .05 | .09 | .77 | .09 | .00 | .65 | 11 | 18 | .65 | | FT | 748739 | В | 138 | .51 | .22 | .51 | .18 | .09 | .00 | .51 | 04 | .51 | 10 | | | | | | Gr | ade 5 | Scienc | æ | | | | | | | |------|---------|---|--------|-----|-------|--------|------|-----|-------|-----|--------|--------|-----| | | GENERAL | | COUNTS | | PRO | PORT | IONS | | | C | ORRELA | ATIONS | | | Туре | | | | | | | | * | Total | Α | В | С | | | FT | 748740 | Α | 170 | .54 | .54 | .18 | .19 | .09 | .00 | .53 | .53 | 14 | 02 | | FT | 748741 | Α | 138 | .57 | .57 | .12 | .23 | .09 | .00 | .51 | .51 | 04 | 09 | | FT | 748742 | С | 138 | .67 | .13 | .12 | .67 | .09 | .00 | .56 | 10 | 09 | .56 | | FT | 748743 | С | 170 | .67 | .10 | .14 | .67 | .09 | .00 | .53 | .04 | 18 | .53 | | FT | 748744 | А | 138 | .67 | .67 | .18 | .07 | .09 | .00 | .54 | .54 | 08 | 10 | | | | | | G | rade 8 | 3 Scier | ice | | | | | | | |------|---------|-----|--------|-----------------|--------|---------|------|-----|-----|-------|--------|-------|-----| | | GENERAL | | COUNTS | | PRC | PORT | IONS | | | CC | ORRELA | TIONS | | | Туре | Item ID | Key | N | <i>p</i> -value | Α | В | С | - | * | Total | Α | В | С | | OP | 651233 | В | 316 | .68 | .16 | .68 | .12 | .04 | .00 | .62 | 16 | .62 | 36 | | OP | 651246 | В | 316 | .51 | .16 | .51 | .28 | .05 | .00 | .39 | 10 | .39 | 08 | | OP | 673797 | В | 316 | .62 | .08 | .62 | .26 | .05 | .00 | .62 | 19 | .62 | 29 | | OP | 676474 | Α | 316 | .64 | .64 | .11 | .21 | .04 | .00 | .57 | .57 | 17 | 27 | | OP | 676475 | В | 316 | .61 | .21 | .61 | .14 | .04 | .00 | .35 | .02 | .35 | 21 | | OP | 676476 | С | 316 | .82 | .07 | .07 | .82 | .04 | .00 | .57 | 23 | 22 | .57 | | OP | 676477 | С | 316 | .66 | .08 | .21 | .66 | .05 | .00 | .38 | 19 | 02 | .38 | | OP | 676478 | С | 316 | .61 | .08 | .27 | .61 | .05 | .00 | .40 | 17 | 07 | .40 | | OP | 676479 | В | 316 | .44 | .26 | .44 | .26 | .05 | .00 | .40 | .02 | .40 | 19 | | OP | 691162 | Α | 316 | .66 | .66 | .13 | .16 | .04 | .00 | .63 | .63 | 14 | 37 | | OP | 691166 | В | 316 | .58 | .24 | .58 | .14 | .05 | .00 | .43 | .05 | .43 | 33 | | OP | 707432 | Α | 316 | .56 | .56 | .11 | .28 | .04 | .00 | .50 | .50 | 15 | 19 | | OP | 707433 | Α | 316 | .75 | .75 | .07 | .13 | .05 | .00 | .58 | .58 | 17 | 25 | | OP | 707434 | С | 316 | .58 | .22 | .16 | .58 | .05 | .00 | .21 | .09 | 06 | .21 | | OP | 707435 | С | 316 | .69 | .10 | .16 | .69 | .05 | .00 | .39 | 04 | 13 | .39 | | OP | 707436 | Α | 316 | .76 | .76 | .06 | .13 | .05 | .00 | .67 | .67 | 20 | 34 | | OP | 707437 | В | 316 | .68 | .11 | .68 | .17 | .04 | .00 | .62 | 20 | .62 | 29 | | OP | 707438 | С | 316 | .79 | .07 | .09 | .79 | .05 | .00 | .49 | 14 | 15 | .49 | | OP | 707440 | С | 316 | .54 | .13 | .28 | .54 | .05 | .00 | .12 | 04 | .16 | .12 | | OP | 707442 | Α | 316 | .73 | .73 | .10 | .12 | .05 | .00 | .59 | .59 | 14 | 30 | | OP | 707445 | Α | 316 | .72 | .72 | .08 | .15 | .05 | .00 | .54 | .54 | 18 | 19 | | OP | 707446 | С | 316 | .46 | .25 | .24 | .46 | .05 | .00 | .17 | 03 | .11 | .17 | | OP | 707447 | С | 316 | .60 | .20 | .15 | .60 | .05 | .00 | .28 | 01 | 03 | .28 | | OP | 707448 | Α | 316 | .76 | .76 | .09 | .11 | .04 | .00 | .62 | .62 | 17 | 33 | | OP | 708809 | Α | 316 | .56 | .56 | .14 | .24 | .05 | .00 | .54 | .54 | 12 | 23 | | FT | 748746 | В | 166 | .82 | .04 | .82 | .11 | .03 | .00 | .66 | 20 | .66 | 42 | | FT | 748747 | В | 147 | .65 | .07 | .65 | .23 | .05 | .00 | .63 | 27 | .63 | 25 | | | | | | G | rade 8 | 3 Scier | ice | | | | | | | |------|---------|-----|--------|-----------------|--------|---------|------|-----|-----|-------|--------|-------|-----| | | GENERAL | | COUNTS | | PRC | PORT | IONS | | | CC | ORRELA | TIONS | | | Туре | Item ID | Key | N | <i>p</i> -value | Α | В | С | - | * | Total | Α | В | С | | FT | 748748 | В | 147 | .49 | .24 | .49 | .22 | .05 | .00 | .41 | 13 | .41 | 06 | | FT | 748749 | С | 166 | .83 | .07 | .08 | .83 | .03 | .00 | .59 | 24 | 30 | .59 | | FT | 748750 | Α | 147 | .24 | .24 | .40 | .31 | .05 | .00 | .21 | .21 | .22 | 16 | | FT | 748751 | С | 166 | .60 | .14 | .22 | .60 | .03 | .00 | .37 | 06 | 18 | .37 | | FT | 748752 | С | 166 | .72 | .16 | .09 | .72 | .03 | .00 | .40 | 15 | 13 | .40 | | FT | 748753 | В | 147 | .62 | .19 | .62 | .14 | .05 | .00 | .43 | 07 | .43 | 18 | | FT | 748754 | С | 166 | .72 | .17 | .08 | .72 | .03 | .00 | .32 | 04 | 16 | .32 | | FT | 748755 | Α | 166 | .62 | .62 | .13 | .22 | .03 | .00 | .56 | .56 | 09 | 38 | | FT | 748756 | С | 147 | .81 | .09 | .05 | .81 | .05 | .00 | .57 | 28 | 10 | .57 | | FT | 748757 | В | 166 | .75 | .05 | .75 | .17 | .03 | .00 | .59 | 12 | .59 | 38 | | FT | 748759 | Α | 147 | .81 | .81 | .05 | .09 | .05 | .00 | .64 | .64 | 17 | 31 | | FT | 748761 | Α | 147 | .72 | .72 | .07 | .16 | .05 | .00 | .63 | .63 | 14 | 34 | | FT | 748762 | С | 166 | .55 | .20 | .22 | .55 | .03 | .00 | .27 | 03 | 10 | .27 | | FT | 748763 | Α | 147 | .83 | .83 | .06 | .06 | .05 | .00 | .61 | .61 | 18 | 28 | | | | | | Gr | ade 1 | 1 Scier | nce | | | | | | | |------|---------|-----|--------|-----------------|-------|---------|------|-----|-----|-------|--------|-------|-----| | | GENERAL | | COUNTS | | PRC | PORT | IONS | | | CC | ORRELA | TIONS | | | Туре | Item ID | Key | N | <i>p</i> -value | Α | В | С | - | * | Total | Α | В | С | | OP | 651774 | В | 293 | .58 | .14 | .58 | .18 | .09 | .00 | .59 | 10 | .59 | 16 | | OP | 651785 | С | 293 | .66 | .13 | .12 | .66 | .09 | .00 | .50 | 07 | 05 | .50 | | OP | 651793 | В | 293 | .63 | .12 | .63 | .16 | .09 | .00 | .65 | 07 | .65 | 25 | | OP | 651798 | В | 293 | .62 | .09 | .62 | .19 | .10 | .00 | .56 | .00 | .56 | 17 | | OP | 651808 | Α | 293 | .45 | .45 | .10 | .37 | .09 | .00 | .47 | .47 | 13 | 01 | | OP | 651822 | Α | 293 | .63 | .63 | .07 | .22 | .08 | .00 | .63 | .63 | 16 | 19 | | OP | 673806 | В | 293 | .65 | .14 | .65 | .12 | .10 | .00 | .61 | 09 | .61 | 17 | | OP | 673809 | С | 293 | .50 | .23 | .18 | .50 | .09 | .00 | .30 | .06 | .07 | .30 | | OP | 676484 | В | 293 | .67 | .12 | .67 | .13 | .08 | .00 | .68 | 22 | .68 | 21 | | OP | 676495 | В | 293 | .72
 .06 | .72 | .13 | .09 | .00 | .71 | 18 | .71 | 23 | | OP | 691177 | Α | 293 | .59 | .59 | .17 | .14 | .10 | .00 | .55 | .55 | 05 | 12 | | OP | 691179 | С | 293 | .62 | .08 | .20 | .62 | .09 | .00 | .54 | 12 | 08 | .54 | | OP | 691183 | Α | 293 | .58 | .58 | .26 | .06 | .09 | .00 | .55 | .55 | 08 | 18 | | OP | 691185 | С | 293 | .73 | .09 | .09 | .73 | .08 | .00 | .62 | 11 | 20 | .62 | | OP | 691187 | С | 293 | .78 | .04 | .10 | .78 | .08 | .00 | .71 | 18 | 27 | .71 | | OP | 691189 | В | 293 | .52 | .21 | .52 | .18 | .09 | .00 | .48 | .00 | .48 | 11 | | OP | 691192 | Α | 293 | .84 | .84 | .06 | .01 | .09 | .00 | .70 | .70 | 19 | 14 | | OP | 707451 | Α | 293 | .82 | .82 | .03 | .05 | .09 | .00 | .69 | .69 | 15 | 16 | Nebraska State Accountability Alternate Assessment 2016 Technical Report | | | | | Gr | ade 1 | 1 Scier | ice | | | | | | | |------|---------|-----|--------|-----------------|-------|---------|------|-----|-----|-------|--------|-------|-----| | | GENERAL | | COUNTS | | PRC | PORT | IONS | | | CC | ORRELA | TIONS | | | Туре | Item ID | Key | N | <i>p</i> -value | Α | В | С | - | * | Total | Α | В | С | | OP | 707452 | Α | 293 | .82 | .82 | .02 | .06 | .09 | .00 | .73 | .73 | 15 | 24 | | OP | 707453 | Α | 293 | .67 | .67 | .13 | .12 | .08 | .00 | .56 | .56 | 11 | 14 | | OP | 707454 | С | 293 | .66 | .12 | .13 | .66 | .09 | .00 | .38 | .05 | 01 | .38 | | OP | 707456 | С | 293 | .42 | .33 | .15 | .42 | .10 | .00 | .36 | .15 | 12 | .36 | | OP | 707457 | В | 293 | .43 | .29 | .43 | .18 | .09 | .00 | .43 | .16 | .43 | 23 | | OP | 707458 | Α | 293 | .61 | .61 | .12 | .17 | .09 | .00 | .62 | .62 | 11 | 18 | | OP | 707459 | Α | 293 | .70 | .70 | .07 | .14 | .09 | .00 | .70 | .70 | 17 | 22 | | OP | 707461 | В | 293 | .55 | .17 | .55 | .20 | .09 | .00 | .52 | .04 | .52 | 19 | | OP | 707462 | С | 293 | .56 | .19 | .16 | .56 | .09 | .00 | .42 | 02 | .00 | .42 | | OP | 707463 | С | 293 | .53 | .23 | .14 | .53 | .10 | .00 | .47 | .02 | 11 | .47 | | OP | 707464 | Α | 293 | .72 | .72 | .09 | .12 | .08 | .00 | .65 | .65 | 16 | 24 | | OP | 707466 | С | 293 | .81 | .04 | .06 | .81 | .09 | .00 | .67 | 08 | 21 | .67 | | FT | 748764 | С | 146 | .68 | .10 | .12 | .68 | .10 | .00 | .70 | 27 | 13 | .70 | | FT | 748765 | В | 146 | .71 | .08 | .71 | .12 | .09 | .00 | .71 | 14 | .71 | 28 | | FT | 748766 | С | 146 | .66 | .08 | .18 | .66 | .08 | .00 | .58 | 09 | 15 | .58 | | FT | 748767 | В | 146 | .72 | .01 | .72 | .20 | .08 | .00 | .68 | 07 | .68 | 30 | | FT | 748768 | Α | 146 | .74 | .74 | .05 | .11 | .10 | .00 | .68 | .68 | 19 | 16 | | FT | 748769 | Α | 146 | .50 | .50 | .10 | .32 | .08 | .00 | .53 | .53 | 16 | 06 | | FT | 748770 | Α | 146 | .68 | .68 | .08 | .14 | .10 | .00 | .73 | .73 | 19 | 23 | | FT | 748771 | В | 146 | .42 | .25 | .42 | .23 | .10 | .00 | .39 | .14 | .39 | 12 | | FT | 748772 | Α | 146 | .46 | .46 | .25 | .21 | .08 | .00 | .40 | .40 | .15 | 17 | | FT | 748773 | С | 146 | .67 | .12 | .13 | .67 | .08 | .00 | .50 | 13 | .00 | .50 | | FT | 748774 | Α | 146 | .33 | .33 | .23 | .35 | .10 | .00 | .47 | .47 | 13 | .08 | | FT | 748778 | С | 146 | .50 | .22 | .18 | .50 | .10 | .00 | .37 | .02 | .04 | .37 | | FT | 748779 | В | 146 | .72 | .11 | .72 | .09 | .08 | .00 | .66 | 15 | .66 | 20 | | FT | 748780 | В | 146 | .73 | .06 | .73 | .12 | .08 | .00 | .56 | 05 | .56 | 13 | | FT | 748782 | С | 146 | .76 | .09 | .05 | .76 | .09 | .01 | .65 | 16 | 20 | .65 | | FT | 748783 | Α | 146 | .79 | .79 | .05 | .08 | .08 | .00 | .62 | .62 | 21 | 10 | #### APPENDIX I: OVERVIEW OF RASCH MEASUREMENT Most psychometricians agree that, when possible, the Rasch model is the preferred approach to manage the assessment and reporting processes (Rasch, 1960; Wright & Stone, 1979; Smith & Smith, 2004; Mead, 2008). For non-statisticians, the most compelling reasons may be that the Rasch model: - is simple to apply, and - preserves the number-correct ordering. Simplicity makes the methods (relatively) easy to explain and the results to interpret. The results are straightforward and readily defended in front of administrators, parents, educators, and courts. And nontrivially, the simplicity helps meet the increasingly demanding time lines for reporting. With number-correct scoring, students with more correct responses are always considered more proficient than students with fewer correct. This is intuitively obvious, based on more than a century of experience using and interpreting such scores. For statisticians, the attractions of the Rasch model are more esoteric, including: - an interval scale of measurement, - meaningful estimates of the standard errors at each raw score, and, - simple sufficient statistics for person and item parameters. The interval scale makes it possible to construct a ruler and place the students and the items on the same ruler, along with any performance expectations or normative information. A difference of, say, 10 scale score units will have the same meaning at any point along the scale and will have the same implications when comparing a student to earlier assessments, to an item, to normative information, to expectations, to a growth target, or to another student. The sufficient statistics are essential to the simplicity. They make it possible to derive estimation equations for person parameters that do not involve the item parameters and for the item parameters that do not involve person parameters. It does not matter which items are used for the assessment or which students are used for the calibration, given the items are appropriate for the students. Still more compelling, once the sufficient statistics have been extracted, there is nothing remaining in the data that is directly relevant to the measurement. Any residual information can be used to control and monitor the model. The residuals contain diagnostic information about the student's performance on specific items or clusters of items. The model does, however, place special demands on the item development and test construction processes. In essence, the model requires that all items, while imperfect, be equally valid and reliable instances of the construct. When sufficient care is taken in item and test development, most achievement test data can adequately satisfy the demands of the model and help realize its advantages of valid measurement, quality control, and effective, timely reporting. #### The Rasch Philosophy of Measurement George Rasch (1960), to derive data that he considered worthy of the name measurement, reasoned that the interaction between the person and the item must be governed by a single person parameter (ability) and a single item parameter (difficulty). If person A has more ability than person B, then A is more likely than B to answer <u>any</u> item correctly. If item i is more difficult than item j, then any person is less likely to answer item i correctly. These two common sense assertions are axiomatic to Rasch Measurement and must hold regardless of any other characteristics of the people or the items. This reasoning led Rasch to the simple logistic model, which had several very useful and closely related properties touched on above (Rasch, 1960, 1977): - *Simplicity*, which allows straightforward calculations, ready communication, and interpretation of the measures (Wright & Stone, 1979), - Separability of the model parameters (Rasch, 1960), - Sufficiency that does not involve the parameters (Andersen, 1977), - *Specific objectivity*, sometimes called *person-free[d]* calibration and *item-free[d]* measurement (Wright, 1968), and *Specific objectivity* means that the estimation equations for ability do not involve the difficulty parameters, and the equations for difficulty do not involve the ability parameters. Specific objectivity is possible when *sufficient statistics* for the parameters exist. The sufficient statistics exist because the parameters are *separable* in the model. In practical terms, the students can be ordered on the measurement continuum by their number correct scores and the items can be ordered on the same continuum by the number of correct responses. No other information is necessary for the measurement and anything remaining in the data can be used to control and monitor fit to the model. Specific objectivity is the cornerstone of the Rasch family of measurement models (Wright & Mok, 1980). ### THE MODEL FOR MEASUREMENT #### Dichotomous Items Multiple-choice items (MC) are calibrated using the most familiar form of the model (Rasch, 1960; Wright & Panchapakesan, 1969; Wright & Stone 1979; Andrich, 1988; Fischer & Molenaar, 1995; Smith & Smith, 2004). The Rasch model applicable to dichotomously scored items, given person ability and item difficulty, can be seen in the basic statement of the model. The probability of success for a person with ability β_v on an item with difficulty δ_i is a function of the difference between the ability of the person and the difficulty of the item; mathematically: 1. $$P(right \mid \beta_{v}, \delta_{i}) = \frac{e^{\beta_{v} - \delta_{i}}}{1 + e^{\beta_{v} - \delta_{i}}} = \frac{B_{v}}{B_{v} + \Delta_{i}}$$, where $B_{v} = e^{\beta_{v}}$ and $\Delta_{i} = e^{\delta_{i}}$. This is the probability of scoring one rather than zero on an item for which those are the only possibilities. This expression results in the familiar S-shaped curve relating the ability-difficulty metric to number correct score. Its simplicity makes it especially suited for educational assessment by drawing a clear distinction between the information (captured in the parameter estimates by the sufficient statistics) relevant to estimating the ability property that all examinees share and the information relevant to describing unique characteristics of individuals. The model returns the identical estimated ability for every student with the same number correct score on a form. In the estimation phase, there is no distinction between the student who passes the easy item and misses the
difficult items and the student who misses the easy items and passes the difficult ones. At the control and diagnostic stage, there is a great deal of difference between the two situations. In the first, there is a very clear statement of the person's true location on the construct; in the second, there are two very different statements when the two halves of the test are viewed separately. This is the stage at which Rasch focuses his concern for the control of the model. The model itself provides a probability statement about any outcome. Typically, one examines the residuals, which can be expressed as the odds against the observed response. When these are collected and dissected, the conclusion for the first student would be nothing surprising occurred; for the second student, most of the responses were surprising. This diagnostic information can be put to good use when reporting and interpreting the test scores. The strong measurement model is the instrument for understanding the scores, whether it concludes the student was accurately and validly measured or not. It will help lead the teacher and students to the most appropriate next steps. ### **CALIBRATION: ESTIMATING ITEM DIFFICULTIES** DRC uses the Rasch measurement model to estimate the student proficiencies and to control the assessment process. The model provides straightforward algorithms to compute ability estimates on a unidimensional, equal-interval scale of measurement from the number correct scores. WINSTEPS (2015) implements the joint maximum likelihood estimation procedure (Linacre, 2015) for estimating item difficulties. This calibration software is commercially available and widely used in the testing industry. In addition to performing item calibration and ability estimation, the capabilities of the WINSTEPS program will be utilized to assess unidimensionality, item interdependence, and other deviations from the model. The program also has several options for exploring the personitem residual matrix (Mead, 1976, 2008; Ludlow 1986; Smith, 2000). In the simplest formulation, estimating either the item difficulty or the person ability involves solving the fundamental equation that states the observed score must equal the expected score. For example, the ability estimate for a person who scores r on a set of L items is derived from: 2. $$r_v = \sum_{i=1}^L \sum_{k=0}^{m_i} k \hat{P}_{vik}$$, where \hat{P}_{vik} is defined by (1) with estimates replacing the parameters. Rasch calibration and scaling have become relatively routine operations. Members of the DRC psychometric staff have been instrumental in the development of the Rasch model and its application over several decades and are intimately familiar with the software for its application. # Appendix J: Reading, Mathematics, and Science Operational Form Calibration Summaries Winsteps Table 3.1 Interpretation Guide ### Reading #### Grade 3 TABLE 3.1 State NE READING ALT Spring 2016 Grade RE03_OUT.txt Oct 5 2016 13: 4 INPUT: 394393 Student 25 READ REPORTED: 258 Student 25 READ 2 CATS WINSTEPS 3.92.1 SUMMARY OF 224 MEASURED (NON-EXTREME) Student | | TOTAL | | | | MODEL | | INE | ·IT | OUTF |
IT | |------------|----------------|-----------|--------|---------|--------|------|------|---------|--------------|--------| | | SCORE | COUNT | MEASU | JRE | S.E. | MI | NSQ | ZSTD | MNSQ | ZSTD | |
 MEAN | 16.1 | 25.0 | 1.09 |
991 | .5298 | 1 | .00 | .1 | .96 | .1 | | P.SD | 5.4 | .0 | 1.28 | 390 | .1595 | | .12 | .7 | .23 | .8 | | S.SD | 5.4 | .0 | 1.29 | 919 | .1599 | | .12 | .7 | .23 | .8 | | MAX. | 24.0 | 25.0 | 3.65 | 551 | 1.0326 | 1 | .33 | 2.1 | 1.84 | 2.2 | | MIN. | 1.0 | 25.0 | -3.10 | 070 | .4213 | | .73 | -2.3 | .53 | -2.2 | | |
RMSE .5627 | TRUE SD | 1.1597 | SEPA | RATION | 2.06 | Stud | len REL |
IABILITY | .81 | | MODEL | RMSE .5533 | TRUE SD | 1.1642 | SEPA | RATION | 2.10 | Stud | den REL | IABILITY | .82 | | S.E. | OF Student | MEAN = .0 | 863 | | | | | | | | ______ #### Grade 4 TABLE 3.1 State NE READING ALT Spring 2016 Grade RE04_OUT.txt Oct 5 2016 13: 5 INPUT: 394393 Student 25 READ REPORTED: 273 Student 25 READ 2 CATS WINSTEPS 3.92.1 SUMMARY OF 243 MEASURED (NON-EXTREME) Student | | TOTAL | | | | MODEL | | INE | IT | OUTF | IT | - | |-------|------------|-----------|--------|-----|---------|------|------|----------|----------|------|---| | | SCORE | COUNT | MEASU | JRE | S.E. | M | NSQ | ZSTD | MNSQ | ZSTD | | | | | | | | | | | | | | | | MEAN | 17.3 | 25.0 | 1.10 | 058 | .5669 | 1 | .02 | .3 | .99 | .2 | | | P.SD | 5.3 | .0 | 1.34 | 494 | .1742 | | .15 | .8 | .35 | .8 | | | S.SD | 5.3 | .0 | 1.3 | 522 | .1746 | | .15 | .8 | .35 | .8 | | | MAX. | 24.0 | 25.0 | 3.43 | 347 | 1.0444 | 1 | .65 | 3.9 | 2.71 | 4.1 | | | MIN. | 1.0 | 25.0 | -3.5 | 505 | .4290 | | .63 | -2.2 | .29 | -1.8 | | | | | | | | | | | | | | | | REAL | RMSE .6083 | TRUE SD | 1.2045 | SEP | ARATION | 1.98 | Stud | den RELI | IABILITY | .80 | | | MODEL | RMSE .5930 | TRUE SD | 1.2121 | SEP | ARATION | 2.04 | Stud | den RELI | IABILITY | .81 | | | S.E. | OF Student | MEAN = .0 | 867 | | | | | | | | | #### Grade 5 TABLE 3.1 State NE READING ALT Spring 2016 Grade RE05_OUT.txt Oct 5 2016 13: 6 INPUT: 394393 Student 25 READ REPORTED: 312 Student 25 READ 2 CATS WINSTEPS 3.92.1 SUMMARY OF 288 MEASURED (NON-EXTREME) Student | | TOTAL | | | MODEL | | | INF | 'IT | OUTFIT | | |-------------|--------------|---------|--------|---------|--------|------|------|----------|--------------|------| | | SCORE | COUNT | MEAS | URE | S.E. | M | NSQ | ZSTD | MNSQ | ZSTI | | MEAN | 16.3 | 25.0 | 1.0 |
953 | .5245 | 1 | .00 | .1 | .98 | | | P.SD | 5.0 | .0 | 1.1 | 994 | .1440 | | .16 | .8 | .34 | . 9 | | S.SD | 5.0 | .0 | 1.2 | 015 | .1442 | | .16 | .8 | .34 | . ! | | .XAM | 24.0 | 25.0 | 3.6 | 760 1 | L.0357 | 1 | .54 | 3.3 | 2.14 | 3. | | MIN. | 1.0 | 25.0 | -3.2 | 326 | .4280 | | .69 | -2.0 | .35 | -1. | |
REAL RM |
SE .5576 | TRUE SD | 1.0619 | SEPAF | RATION | 1.90 | Stud | len RELI |
IABILITY | .7 | | DEL RM | SE .5439 | TRUE SD | 1.0689 | SEPAR | RATION | 1.97 | Stud | len RELI | CABILITY | . 79 | ----- #### Grade 6 TABLE 3.1 State NE READING ALT Spring 2016 Grade RE06_OUT.txt Oct 5 2016 13: 8 INPUT: 394393 Student 25 READ REPORTED: 331 Student 25 READ 2 CATS WINSTEPS 3.92.1 SUMMARY OF 314 MEASURED (NON-EXTREME) Student | | TOTAL | | | MODEL | | INFIT | | | OUTFIT | | | |------------------------------|------------|---------|--------|-------|---------|-------|------|----------|----------|------|---| | ! | SCORE | COUNT | MEAS | URE | S.E. | MI | NSQ | ZSTD | MNSQ | ZSTD | | | | | | | | | | | | | | - | | MEAN | 16.1 | 25.0 | 1.1 | 475 | .5420 | 1 | .00 | .1 | 1.00 | .1 | | | P.SD | 5.6 | .0 | 1.3 | 531 | .1641 | | .16 | .9 | .57 | .9 | | | S.SD | 5.6 | .0 | 1.3 | 553 | .1644 | | .16 | .9 | .57 | .9 | | | MAX. | 24.0 | 25.0 | 3.7 | 388 | 1.0403 | 1 | .52 | 2.7 | 8.82 | 3.2 | | | MIN. | 1.0 | 25.0 | -3.1 | 814 | .4262 | | .71 | -2.3 | .33 | -2.1 | | | | | | | | | | | | | | - | | REAL | RMSE .5814 | TRUE SD | 1.2219 | SEP | ARATION | 2.10 | Stud | den RELI | IABILITY | .82 | | | MODEL 1 | RMSE .5663 | TRUE SD | 1.2289 | SEP | ARATION | 2.17 | Stud | den RELI | IABILITY | .82 | | | S.E. OF Student MEAN = .0765 | #### Grade 7 TABLE 3.1 State NE READING ALT Spring 2016 Grade RE07_OUT.txt Oct 5 2016 13: 9 INPUT: 394393 Student 25 READ REPORTED: 330 Student 25 READ 2 CATS WINSTEPS 3.92.1 SUMMARY OF 303 MEASURED (NON-EXTREME) Student | | TOTAL | | | | MODEL | INFIT | | | OUTFIT | | |-------|--------------|---------|--------------|-----|---------|-------|------|----------|----------|------| | | SCORE | COUNT | MEASURE | | S.E. | M | NSQ | ZSTD | MNSQ | ZSTD | | | | | | | | | | | | | | MEAN | 16.1 | 25.0 | 1.1 | 816 | .5325 | 1 | .02 | . 2 | .98 | .1 | | P.SD | 5.2 | .0 | 1.2 | 701 | .1571 | | .16 | .9 | .33 | .9 | | S.SD | 5.2 | .0 | 1.2 | 722 | .1574 | | .16 | .9 | .33 | .9 | | MAX. | 24.0 | 25.0 | 3.8 | 176 | 1.0382 | 1 | .52 | 3.0 | 3.26 | 3.3 | | MIN. | 1.0 | 25.0 | -3.1 | 394 | .4296 | | .64 | -2.2 | .30 | -2.1 | | | | | | | | | | | | | | REAL | RMSE .5722 | TRUE SD | 1.1339 | SEP | ARATION | 1.98 | Stud | den RELI | IABILITY | .80 | | MODEL | RMSE .5552 | TRUE SD | 1.1423 SEPAR | | ARATION | 2.06 | Stud | den RELI | IABILITY | .81 | | S.E. | OF Student I | | | | | | | | | | #### **Grade 8** TABLE 3.1 State NE READING ALT Spring 2016 Grade RE08_OUT.txt Oct 5 2016 13:10 INPUT: 394393 Student 25 READ REPORTED: 317 Student 25 READ 2 CATS WINSTEPS 3.92.1 SUMMARY OF 306 MEASURED (NON-EXTREME) Student | | TOTAL | | | MODEL | | | INE | · | OUTFIT | | -
 | |-------|--------------|-----------|-------------------|-------|-----------------------|------|----------|----------|----------|------|-------| | | SCORE | COUNT | MEASU | JRE | S.E. | M | NSQ | ZSTD | MNSQ | ZSTD | - | | MEAN | 16.1 | 25.0 | 1.70 | 080 | .5289 | 1 | .01 | .2 | .99 | .1 | | | P.SD | 5.2 | .0 | 1.24 | 181 | .1399 | | .17 | .8 | .33 | .9 | İ | | S.SD | 5.2 | .0 | 1.25 | 502 | .1402 | | .17 | .8 | .33 | .9 | ĺ | | MAX. | 24.0 | 25.0 | 4.3 | 721 | 1.0396 | 1 | .57 | 3.4 | 2.62 | 3.2 | | | MIN. | 3.0 | 25.0 | -1.39 | 988 | .4322 | | .68 | -2.1 | .31 | -2.0 | | | | | | | | | | | | | | | | REAL | RMSE .5627 | TRUE SD | 1.1141 | SEP | ARATION | 1.98 | Stud | den RELI | IABILITY | .80 | | | MODEL | RMSE .5471 | TRUE SD | 1.1219 SEPARATION | | 2.05 Studen RELIABILI | | IABILITY | .81 | | | | | S.E. | OF Student 1 | MEAN = .0 | 715 | | | | | | | | | #### Grade 11 TABLE 3.1 State NE READING ALT Spring 2016 Grade RE11_OUT.txt Oct 5 2016 13:12 INPUT: 394393 Student 25 READ REPORTED: 292 Student 25 READ 2 CATS WINSTEPS 3.92.1 SUMMARY OF 268 MEASURED (NON-EXTREME) Student |
 | TOTAL | | | MODEL | | INFIT | | | OUTFIT | | |------------|------------|-----------|--------|-------|---------|-------|---------|---------|----------|------| | | SCORE | COUNT | MEASU | JRE | S.E. | M | NSQ | ZSTD | MNSQ | ZSTD |

 MEAN | 17.0 | 25.0 | 1.2 | 758 | .5438 | |
.99 | . 2 | .95 | .1 | | P.SD | 5.2 | .0 | 1.25 | 517 | .1546 | | .13 | .7 | .28 | .8 | | S.SD | 5.3 | .0 | 1.25 | 540 | .1549 | | .13 | .7 | .28 | .8 | | MAX. | 24.0 | 25.0 | 3.64 | 406 | 1.0323 | 1 | .46 | 3.2 | 1.83 | 3.3 | | MIN. | 1.0 | 25.0 | -3.13 | 389 | .4219 | | .73 | -1.4 | .40 | -1.4 | | | | | 1 1112 | | | 1 02 | | | | | | REAL | | TRUE SD | 1.1113 | | ARATION | 1.93 | | | ABILITY | .79 | | MODEL | RMSE .5654 | TRUE SD | 1.1167 | SEP | ARATION | 1.98 | Stud | en RELI | IABILITY | .80 | | S.E. | OF Student | MEAN = .0 | 766 | | | | | | | | #### **Mathematics** #### Grade 3 TABLE 3.1 State NE MATH ALT Spring 2016 Grade 3 MAO3_OUT.txt Oct 5 2016 12:54 INPUT: 394393 Student 25 MATH REPORTED: 246 Student 25 MATH 2 CATS WINSTEPS 3.92.1 SUMMARY OF 208 MEASURED (NON-EXTREME) Student | | TOTAL | | | MODEL | I | FIT | OUTF | 'IT | |---------|--------------|-----------|----------|-------------|----------|----------|----------|-------| | | SCORE | COUNT | MEASUR | E S.E. | MNSQ | ZSTD | MNSQ | ZSTD | | | 16.2 | 25.0 | .830 |
0 .5581 | 1.01 | .1 |
.94 | .1 | | P.SD | 5.6 | .0 | 1.453 | | .20 | 1.0 | .38 | 1.0 | | S.SD | 5.7 | .0 | 1.457 | 4 .1715 | .20 | 1.0 | .38 | 1.0 | | MAX. | 24.0 | 25.0 | 3.494 | 1 1.0495 | 1.69 | 3.1 | 2.32 | 3.7 | | MIN. | 1.0 | 25.0 | -3.696 | 2 .4370 | .64 | -2.3 | .25 | -2.0 | | | | | | | | | | | | REAL : | RMSE .6016 | TRUE SD | 1.3236 S | EPARATION | 2.20 Stu | ıden REL | IABILITY | 7 .83 | | MODEL 1 | RMSE .5837 | TRUE SD | 1.3316 S | EPARATION | 2.28 Sti | ıden REL | IABILITY | 7 .84 | | S.E. | OF Student I | MEAN = .1 | 011 | | | | | | #### **Grade 4** TABLE 3.1 State NE MATH ALT Spring 2015 Grade 4 MA04_OUT.txt Oct 5 2016 12:55 INPUT: 394393 Student 30 MATH REPORTED: 260 Student 30 MATH 2 CATS WINSTEPS 3.92.1 ----- SUMMARY OF 226 MEASURED (NON-EXTREME) Student | | יי | TOTAL | | | | MODEL | INFIT | | FIT | OUTF |
IT | | |------------------------------|--------|-------|---------|---------|-----|---------|-------|--------------|---------|----------|--------|---| | | 5 | SCORE | COUNT | MEASURE | | S.E. | M | INSQ | ZSTD | MNSQ | ZSTD | | | | | | | | | | | | | | | - | | MEAI | N | 20.0 | 30.0 | 1.0 | 763 | .4966 | 1 | .00 | .1 | .97 | .1 | | | P.SI | D | 6.2 | .0 | 1.2 | 692 | .1619 | | .13 | .8 | .35 | .9 | | | S.SI | D | 6.2 | .0 | 1.2 | 720 | .1622 | | .13 | .8 | .35 | .9 | | | MAX | | 29.0 | 30.0 | 3.6 | 957 | 1.0288 | 1 | .52 | 3.1 | 3.63 | 3.1 | | | MIN | | 3.0 | 30.0 | -2.3 | 319 | .3870 | | .73 | -2.5 | .39 | -2.3 | | | | | | | | | | | | | | | - | | REA | L RMSE | .5315 | TRUE SD | 1.1526 | SEP | ARATION | 2.17 | Stud | den REL | IABILITY | .82 | | | MODE | L RMSE | .5223 | TRUE SD | 1.1567 | SEP | ARATION | 2.21 | 1 Studen REL | | IABILITY | .83 | | | S.E. OF Student MEAN = .0846 | | | | | | | | | | | Ì | | | | | | | | | | | | | | | | #### Grade 5 TABLE 3.1 State NE MATH ALT Spring 2013 Grade 5 MA05_OUT.txt Oct 5 2016 12:57 INPUT: 394393 Student 30 MATH REPORTED: 311 Student 30 MATH 2 CATS WINSTEPS 3.92.1 SUMMARY OF 283 MEASURED (NON-EXTREME) Student | | TOTAL | | | MODEL | | INFI' |
Г | OUTF | IT | |-------|--------------|-----------|--------|------------|--------|-------|-------|----------|------| | | SCORE | COUNT | MEASU | RE S.E. | MN | ISQ . | ZSTD | MNSQ | ZSTD | | | 19.7 | 30.0 | . 91 | 07 .5024 |
1. | 00 | .1 | .96 | .0 | | P.SD | 6.3 | .0 | 1.33 | | | 15 | . 9 | .33 | 1.0 | | S.SD | 6.3 | .0 | 1.33 | 49 .1696 | | 16 | .9 | .33 | 1.0 | | MAX. | 29.0 | 30.0 | 3.61 | 66 1.0313 | 1. | 52 | 3.2 | 2.34 | 3.3 | | MIN. | 1.0 | 30.0 | -3.68 | 74 .3910 | | 65 | -2.5 | .28 | -2.4 | | | | | | | | | | | | | REAL | RMSE .5423 | TRUE SD | 1.2172 | SEPARATION | 2.24 | Stude | n REL | IABILITY | .83 | | MODEL | RMSE .5302 | TRUE SD | 1.2226 | SEPARATION | 2.31 | Stude | n REL | IABILITY | .84 | | S.E. | OF Student 1 | MEAN = .0 | 794 | | | | | | | | | | | | | | | | | | #### Grade 6 TABLE 3.1 State NE MATH ALT Spring 2015 Grade 6 MA06_OUT.txt Oct 5 2016 12:58 INPUT: 394393 Student 30 MATH REPORTED: 331 Student 30 MATH 2 CATS WINSTEPS 3.92.1 SUMMARY OF 310 MEASURED (NON-EXTREME) Student | | TOTAL | | | | MODEL | | INF | ·IT | OUTF |
IT | | |-------|------------|-----------|--------|-----|---------|------|------|----------|----------|--------|---| | | SCORE | COUNT | MEAS | URE | S.E. | M | NSQ | ZSTD | MNSQ | ZSTD | | | | | | | | | | | | | | - | | MEAN | 19.1 | 30.0 | .83 | 372 | .4715 | 1 | .01 | .1 | 1.00 | .0 | | | P.SD | 6.2 | .0 | 1.2 | 091 | .1356 | | .13 | .9 | .24 | 1.0 | | | S.SD | 6.2 | .0 | 1.2 | 111 | .1358 | | .13 | .9 | .24 | 1.0 | | | MAX. | 29.0 | 30.0 | 3.6 | 443 | 1.0284 | 1 | .57 | 4.1 | 2.16 | 4.0 | | | MIN. | 1.0 | 30.0 | -3.5 | 325 | .3858 | | .67 | -2.6 | .53 | -2.6 | | | | | | | | | | | | | | - | | REAL | RMSE .5012 | TRUE SD | 1.1004 | SEP | ARATION | 2.20 | Stud | den RELI | IABILITY | .83 | | | MODEL | RMSE .4906 | TRUE SD | 1.1051 | SEP | ARATION | 2.25 | Stud | den RELI | IABILITY | .84 | Ì | | S.E. | OF Student | MEAN = .0 | 688 | | | | | | | | | #### **Grade 7** TABLE 3.1 State NE MATH ALT Spring 2015 Grade 7 MAO7_OUT.txt Oct 5 2016 12:59 INPUT: 394393 Student 30 MATH REPORTED: 338 Student 30 MATH 2 CATS WINSTEPS 3.92.1 SUMMARY OF 316 MEASURED (NON-EXTREME) Student | MODEL THEFT | OUTFIT | |---|----------| | | | | SCORE COUNT MEASURE S.E. MNSQ ZSTD MNS | SQ ZSTD | | | | | MEAN 19.3 30.0 1.0208 .4932 1.03 .3 1.0 | 00 .2 | | P.SD 6.5 .0 1.3224 .1540 .16 .9 .3 | 31 1.0 | | S.SD 6.5 .0 1.3245 .1543 .16 .9 .3 | 31 1.0 | | MAX. 29.0 30.0 3.7922 1.0326 1.57 3.3 2.5 | 3.2 | | MIN. 1.0 30.0 -3.5359 .3925 .69 -2.4 .3 | 38 -2.2 | | | | | REAL RMSE .5314 TRUE SD 1.2110 SEPARATION 2.28 Studen RELIABII | LITY .84 | | MODEL RMSE .5166 TRUE SD 1.2174 SEPARATION 2.36 Studen RELIABII | LITY .85 | | S.E. OF Student MEAN = .0745 | 1 | #### **Grade 8** TABLE 3.1 State NE MATH ALT Spring 2015 Grade 8 MAO8_OUT.txt Oct 5 2016 13: 1 INPUT: 394393 Student 30 MATH REPORTED: 325 Student 30 MATH 2 CATS WINSTEPS 3.92.1 ______ SUMMARY OF 309 MEASURED (NON-EXTREME) Student | | TOTAL | | | | MODEL | | INF | 'IT | OUTF |
IT | | |---------|--------------|-----------|--------|---------|---------|------|------|----------|----------|--------|---------| | | SCORE | COUNT | MEASU | JRE | S.E. | M | NSQ | ZSTD | MNSQ | ZSTD | - | | | 19.6 | 30.0 | .88 |
321 | .4855 | 1 | .00 | .1 | .99 | .1 | -
 | | P.SD | 6.3 | .0 | 1.24 | 139 | .1431 | | .14 | . 8 | .35 | .9 | i | | S.SD | 6.3 | .0 | 1.24 | 160 | .1434 | | .14 | .8 | .35 | .9 | | | MAX. | 29.0 | 30.0 | 3.61 | 180 | 1.0299 | 1 | .53 | 3.7 | 4.42 | 3.8 | | | MIN. | 3.0 | 30.0 | -2.42 | 225 | .3889 | | .63 | -3.1 | .36 | -2.9 | | | | | | | | | | | | | | - | | REAL | RMSE .5185 | TRUE SD | 1.1307 | SEPA | ARATION | 2.18 | Stud | len RELI | IABILITY | .83 | | | MODEL 1 | RMSE .5062 | TRUE SD | 1.1363 | SEPA | ARATION | 2.24 | Stud | len RELI | IABILITY | .83 | | | S.E. 0 | OF Student N | MEAN = .0 | 709 | #### Grade 11 TABLE 3.1 State NE MATH ALT Spring 2015 Grade 11 MA11_OUT.txt Oct 5 2016 13: 2 INPUT: 394393 Student 30 MATH REPORTED: 311 Student 30 MATH 2 CATS WINSTEPS 3.92.1 SUMMARY OF 280 MEASURED (NON-EXTREME) Student | _ | | | | | | | | | | | | | _ | |---|------|------|-------|---------|--------|-----|---------|------|------|----------|---------|------|---| | | | T | OTAL | | | | MODEL | | INF | ΊΤ | OUTF | IT | | | | | S | CORE | COUNT | MEAS | URE | S.E. | M | VSQ | ZSTD | MNSQ | ZSTD | ļ | | Į | | | | | | | | | | | | | ļ | | | MEAN | | 20.3 | 30.0 | . 7 | 938 | .5086 | 1 | .00 | .1 | .95 | .0 | | | | P.SD | | 6.5 | .0 | 1.3 | 519 | .1722 | | .11 | . 7 | .28 | .8 | | | ĺ | S.SD | | 6.5 | .0 | 1.3 | 543 | .1725 | | .11 | . 7 | .28 | .8 | ĺ | | ĺ | MAX. | | 29.0 | 30.0 | 3.3 | 615 | 1.0291 | 1 | .50 | 2.7 | 2.55 | 2.7 | ĺ | | ĺ | MIN. | | 1.0 | 30.0 | -3.8 | 257 | .3859 | | .75 | -2.3 | .48 | -2.2 | ĺ | | - | | | | | | | | | | | | | ĺ | | ĺ | REAL | RMSE | .5454 | TRUE SD | 1.2370 | SEP | ARATION | 2.27 | Stud | len RELI | ABILITY | .84 | | |MODEL RMSE .5369 TRUE SD 1.2407 SEPARATION 2.31 Studen RELIABILITY .84 | S.E. OF Student MEAN = .0809 | ## **Science** #### Grade 5 TABLE 3.1 State NE SCIENCE ALT Spring 2016 Grade SC05_OUT.txt Oct 5 2016 13:13 INPUT: 394393 Student 25 SCIE REPORTED: 308 Student 25 SCIE 2 CATS WINSTEPS 3.92.1 ----- SUMMARY OF 279 MEASURED (NON-EXTREME) Student | | TOTAL | | | | MODEL | | INF | TIT | OUTF: | IT | | |-------|--------------|-----------|--------|-----|---------|------|------|----------|----------|------|---| | | SCORE | COUNT | MEAS | URE | S.E. | MI | 1SQ | ZSTD | MNSQ | ZSTD | | | | | | | | | | | | | | - | | MEAN | 16.9 | 25.0 | 0 | 999 | .5499 | 1. | .00 | .1 | .97 | .1 | | | P.SD | 5.2 | .0 | 1.2 | 898 | .1679 | | .14 | .7 | .44 | .8 | | | S.SD | 5.2 | .0 | 1.2 | 921 | .1682 | | .14 | .7 | .44 | .8 | | | MAX. | 24.0 | 25.0 | 2.3 | 014 | 1.0424 | 1. | .52 | 2.6 | 4.97 | 2.7 | | | MIN. | 1.0 | 25.0 | -4.6 | 473 | .4289 | | .71 | -2.1 | .51 | -1.8 | ĺ | | | | | | | | | | | | | - | | REAL | RMSE .5872 | TRUE SD | 1.1484 | SEP | ARATION | 1.96 | Stud | len RELI | IABILITY | .79 | ĺ | | MODEL | RMSE .5750 | TRUE SD | 1.1546 | SEP | ARATION | 2.01 | Stud | len RELI | IABILITY | .80 | İ | | S.E. | OF Student 1 | MEAN = .0 | 774 | | | | | | | | İ | ----- #### **Grade 8** TABLE 3.1 State NE SCIENCE ALT Spring 2016 Grade SC08_OUT.txt Oct 5 2016 13:14 INPUT: 394393 Student 25 SCIE REPORTED: 313 Student 25 SCIE 2 CATS WINSTEPS 3.92.1 SUMMARY OF 297 MEASURED (NON-EXTREME) Student | | TOTAL | | | | MODEL | | INE | IT | OUTF |
IT | | |-------|--------------|-----------|--------|---------|---------|------|------|---------|----------|--------|---| | | SCORE | COUNT | MEAS | URE | S.E. | M | NSQ | ZSTD | MNSQ | ZSTD | | | | 16.5 | 25.0 | 1 |
549 | .5241 | 1 | .01 | . 2 | .96 | .1 | · | | P.SD | 5.1 | .0 | 1.1 | 853 |
.1498 | | .13 | .8 | .24 | .9 | i | | S.SD | 5.1 | .0 | 1.1 | 873 | .1501 | | .13 | .8 | .24 | .9 | İ | | MAX. | 24.0 | 25.0 | 2.2 | 965 | 1.0322 | 1 | .41 | 2.8 | 1.88 | 3.0 | İ | | MIN. | 1.0 | 25.0 | -4.4 | 352 | .4187 | | .75 | -1.9 | .38 | -1.8 | ĺ | | | | | | | | | | | | | - | | REAL | RMSE .5559 | TRUE SD | 1.0468 | SEP | ARATION | 1.88 | Stud | den REL | IABILITY | .78 | | | MODEL | RMSE .5451 | TRUE SD | 1.0525 | SEP | ARATION | 1.93 | Stud | den REL | IABILITY | .79 | | | S.E. | OF Student I | MEAN = .0 | 689 | #### Grade 11 TABLE 3.1 State NE SCIENCE ALT Spring 2016 Grade SC11_OUT.txt Oct 5 2016 13:16 INPUT: 394393 Student 30 SCIE REPORTED: 292 Student 30 SCIE 2 CATS WINSTEPS 3.92.1 SUMMARY OF 265 MEASURED (NON-EXTREME) Student | | TOTAL | | | | MODEL | | INE | FIT | OUTF | ΙΤ | |------------|--------------|-----------|--------|-----|---------|------|------|----------|--------------|------| | | SCORE | COUNT | MEAS | URE | S.E. | M | NSQ | ZSTD | MNSQ | ZSTD | | MEAN | 20.4 | 30.0 | .1 | 207 | .5168 | 1 | .02 | .2 | .98 | .1 | | P.SD | 6.5 | .0 | 1.3 | 724 | .1666 | | .15 | .8 | .36 | .8 | | S.SD | 6.6 | .0 | 1.3 | 750 | .1669 | | .15 | .8 | .36 | .8 | | MAX. | 29.0 | 30.0 | 2.6 | 958 | 1.0420 | 1 | .57 | 3.3 | 2.54 | 3.4 | | MIN. | 1.0 | 30.0 | -4.7 | 842 | .3954 | | .72 | -2.3 | .37 | -1.7 | |
 REAL | RMSE .5568 | TRUE SD | 1.2544 | SEP | ARATION | 2.25 | Stuc | len RELI |
[ABILITY | .84 | | MODEL | | TRUE SD | | SEP | ARATION | 2.32 | Stud | den REL | IABILITY | .84 | | S.E. | OF Student I | MEAN = .0 | 845 | | | | | | | | # **Appendix K: Reading Item Bank Difficulties** ## **Grade 3 Reading** | ENTRY | TOTAL | TOTAL | | MODEL | IN | FIT |
TUO | FIT |
 PTBISE | RL-EX | EXACT | MATCH |
 | | |--------|-------|-------|----------|-------|-----------|------|---------|------|-------------|-------|-------|-------|----------|--------| | NUMBER | SCORE | COUNT | MEASURE | S.E. | MNSQ | ZSTD | MNSQ | ZSTD | CORR. | EXP. | OBS% | EXP% | DISPLACE | READ | | 1 | 96 | 258 | 1.1366A | .1512 | 1.27 | 4.1 | 1.40 | 3.2 | .34 | .51 | 60.6 | 70.3 | .4087 | 650565 | | 2 | 188 | 258 | 3859A | .1749 | .82 | -2.1 | .74 | -1.4 | .63 | .60 | 84.5 | 79.4 | 4602 | 650617 | | 3 | 117 | 258 | 1.0660A | .1512 | .83 | -3.0 | .74 | -2.5 | .60 | .51 | 77.4 | 70.3 | 0033 | 650627 | | 4 | 189 | 258 | 4722A | .1780 | .81 | -2.1 | .69 | -1.7 | .66 | .61 | 84.1 | 80.3 | 4104 | 650631 | | 5 | 136 | 258 | .8543A | .1518 | .79 | -3.7 | .71 | -2.9 | .65 | .53 | 79.6 | 70.5 | 2310 | 650716 | | 6 | 161 | 258 | .1278A | .1609 | 1.02 | .3 | 1.09 | .7 | .55 | .57 | 74.8 | 74.2 | | | | 7 | 113 | 258 | 1.1532 | .1512 | 1.11 | 1.8 | 1.10 | .9 | .44 | .51 | 67.3 | 70.3 | .0010 | 691040 | | 8 | 147 | 258 | .4143A | .1559 | .85 | -2.4 | .74 | -2.2 | .64 | .56 | 75.7 | 72.1 | 0548 | 691043 | | 9 | 151 | 258 | 1661A | .1681 | 1.14 | 1.6 | 1.05 | . 4 | .59 | .59 | 71.2 | 76.9 | .4302 | 691044 | | 10 | 187 | 258 | 7994 | .1917 | .90 | 9 | .75 | -1.1 | .67 | .62 | 84.1 | 83.9 | .0000 | 691048 | | 11 | 139 | 258 | .6079A | .1535 | .97 | 4 | 1.12 | 1.0 | .56 | .54 | 75.7 | 71.1 | 0552 | 707756 | | 12 | 147 | 258 | .2659A | .1582 | 1.06 | .9 | 1.00 | .1 | .54 | .57 | 70.4 | 73.1 | .0950 | 707757 | | 13 | 171 | 258 | 3155A | .1726 | .79 | -2.5 | .62 | -2.4 | .72 | .60 | 82.7 | 78.6 | .0383 | 707759 | | 14 | 113 | 258 | 1.0279A | .1512 | 1.03 | .5 | 1.00 | .0 | .50 | .52 | 69.5 | 70.4 | .1260 | 707760 | | 15 | 135 | 258 | .5287A | .1544 | 1.02 | .3 | .97 | 2 | .54 | .55 | | 71.5 | .1194 | 707761 | | 16 | 133 | 258 | 1.0769A | .1512 | 1.06 | 1.1 | 1.01 | .1 | .51 | .51 | 67.7 | 70.3 | 3823 | 707763 | | 17 | 117 | 258 | .9521A | .1514 | 1.16 | 2.5 | 1.16 | 1.4 | .43 | .52 | 61.5 | 70.4 | .1105 | 707765 | | 18 | 186 | 258 | -1.1451A | .2101 | 1.24 | 1.7 | 1.06 | .3 | .64 | .64 | 82.7 | 87.3 | .3851 | 707766 | | 19 | 169 | 258 | 1497A | .1676 | 1.01 | .2 | 1.21 | 1.2 | .58 | .59 | 74.8 | 76.8 | 0709 | 707767 | | 20 | 182 | 258 | 4229A | .1762 | .89 | -1.2 | .73 | -1.5 | .64 | .60 | 82.7 | 79.8 | 2039 | 707768 | | 21 | 151 | 258 | 0468A | .1649 | 1.10 | 1.2 | 1.00 | .1 | .58 | .58 | 71.7 | 75.7 | .3103 | 707769 | | 22 | 174 | 258 | 4460A | .1771 | .93 | 7 | .77 | -1.2 | .67 | .60 | 78.3 | 80.1 | .0798 | 707770 | | 23 | 144 | 258 | .5195A | .1545 | 1.26 | 3.8 | 1.54 | 3.9 | .40 | .55 | 62.8 | 71.5 | 0870 | 707771 | | 24 | 135 | 258 | .9944A | .1513 | .87 | -2.2 | .80 | -1.9 | .61 | .52 | 75.7 | 70.4 | | 707772 | | 25 | 122 | 258 | .7385A | .1524 | .97 | 4 | .99 | .0 | .55 | .54 | 72.1 | 70.7 | .2101 | 708015 | | 26 | 44 | 119 | 1.4029 | .2277 | .96 | 4 | .86 | 6 | .52 | .50 | 69.3 | 70.2 | .0018 | 749135 | | 27 | 63 | 139 | 1.2008 | .2032 | 1.28 | | 1.26 | 1.9 | .33 | .49 | 57.6 | 70.5 | .0004 | 749136 | | 28 | 82 | 139 | .4084 | .2083 | .91 | -1.1 | .78 | -1.4 | .58 | .52 | 73.6 | 71.4 | | 749138 | | 29 | 98 | 139 | 3516 | .2317 | .99 | 1 | .79 | 8 | .56 | .54 | 75.2 | 78.4 | 0006 | 749140 | | 30 | 49 | 119 | 1.1453 | .2267 | .95 | 6 | .87 | 6 | .55 | .52 | 70.3 | 70.3 | .0017 | 749141 | | 31 | 73 | 119 | 1857 | .2550 | ' | -1.0 | | 7 | .69 | .64 | | 77.9 | | 749142 | | 32 | 94 | 139 | 1450 | .2233 | ' | | 1.20 | .9 | | .54 | | 76.1 | | 749143 | | 33 | 71 | 139 | .8715 | .2032 | | 9 | .86 | -1.0 | .54 | .50 | | 70.2 | | 749144 | | 34 | 33 | 119 | 1.9948 | .2382 | .90 | 9 | .82 | 6 | .47 | .43 | 78.2 | 73.7 | .0020 | | | 35 | 50 | 119 | 1.0939 | .2268 | ' | | 1.14 | .8 | | .53 | | 70.3 | | 749223 | | 36 | 68 | 119 | .1234 | .2432 | .93 | 6 | .85 | 7 | | .62 | 80.2 | 75.2 | | 749224 | | 37 | 59 | 139 | 1.3666 | .2042 | ' | 9 | .90 | 7 | | .48 | 75.2 | 71.0 | | 749225 | | 38 | 79 | 119 | 6070 | .2768 | ' | -1.2 | | 9 | | .67 | | 82.4 | | 750257 | | 39 | 38 | 139 | 2.3073 | .2235 | ' | | 1.49 | 2.2 | | .42 | | 76.8 | | 750258 | | 40 | 40 | 139 | 2.2089 | .2204 | ' | | 1.40 | 2.0 | | .43 | | 76.0 | | 750259 | | 41 | 21 | 119 | 2.7564 | .2702 | 1.09
+ | .6 | 1.31 | .9 | .28
+ | .35 | 82.2 | 81.3 | .0019 | 750260 | | MEAN | 113.8 | 207.7 | .5538 | .1894 | • | | .98 | 1 | | į | 74.1 | 74.6 | | | | P.SD | 49.6 | 63.2 | .8787 | .0371 | .15 | 1.8 | .23 | 1.5 | | - 1 | 7.2 | 4.5 | .1898 | | ## **Grade 4 Reading** | ENTRY | TOTAL | TOTAL | | MODEL | IN | FIT | OUT | FIT | PTBISE | RL-EX | EXACT | MATCH | l I | | |--------|-------|-------|----------|-------|------|------|------|------|--------|-------|-------|-------|----------|--------| | NUMBER | SCORE | COUNT | MEASURE | S.E. | MNSQ | ZSTD | MNSQ | ZSTD | CORR. | EXP. | OBS% | EXP% | DISPLACE | READ | | | | | | | + | | + | | + | + | | | ++ | | | 1 | 186 | 273 | 4458A | .1723 | .99 | 1 | .83 | 8 | .65 | .58 | 80.2 | 80.6 | .3014 | 650970 | | 2 | 181 | 273 | 1212A | .1628 | .90 | -1.2 | .77 | -1.4 | .64 | .57 | 80.6 | 77.7 | .1057 | 650974 | | 3 | 173 | 273 | 3899A | .1705 | 1.09 | 1.0 | .90 | 5 | .65 | .58 | 74.9 | 80.1 | .5765 | 650976 | | 4 | 207 | 273 | 4052A | .1710 | .75 | -3.1 | .55 | -2.8 | .68 | .58 | 85.4 | 80.2 | 3783 | 650990 | | 5 | 200 | 273 | -1.1208A | .2013 | 1.19 | 1.5 | .82 | 6 | .69 | .61 | 81.0 | 87.0 | .5761 | 675853 | | 6 | 166 | 273 | .5161A | .1510 | 1.06 | . 9 | .95 | 3 | .50 | .54 | 67.6 | 73.2 | 1670 | 691050 | | 7 | 196 | 273 | 3386A | .1689 | .74 | -3.2 | .53 | -3.0 | .71 | .58 | 84.2 | 79.6 | 0906 | 691051 | | 8 | 142 | 273 | 1.0000A | .1475 | .96 | 6 | .96 | 3 | .53 | .51 | 73.7 | 71.6 | 1087 | 691057 | | 9 | 183 | 273 | 0913A | .1620 | 1.17 | 2.1 | 1.21 | 1.2 | .48 | .57 | 71.7 | 77.4 | .0231 | 691058 | | 10 | 201 | 273 | 6670A | .1804 | .94 | 6 | .76 | -1.1 | .64 | .59 | 84.2 | 82.8 | .0887 | 691061 | | 11 | 170 | 273 | .5870A | .1502 | .94 | 9 | .94 | 5 | .57 | .54 | 77.7 | 72.8 | 3342 | 691063 | | 12 | 215 | 273 | 6093A | .1781 | .93 | 7 | 1.06 | .3 | .55 | .59 | 85.4 | 82.2 | 4698 | 707773 | | 13 | 161 | 273 | .0865A | .1580 | 1.14 | 1.9 | 1.15 | 1.0 | .53 | .56 | 72.1 | 75.9 | .3825 | 707774 | | 14 | 132 | 273 | 1.0668A | .1473 | 1.06 | 1.0 | 1.21 | 1.7 | .47 | .51 | 71.3 | 71.6 | .0417 | 707775 | | 15 | 180 | 273 | .4681A | .1516 | 1.07 | 1.0 | .99 | 1 | .50 | .54 | 66.8 | 73.4 | 4651 | 707776 | | 16 | 206 | 273 | 5544A | .1761 | .73 | -3.1 | .48 | -3.0 | .71 | .59 | 85.0 | 81.6 | 1908 | 707777 | | 17 | 131 | 273 | 1.3061A | .1474 | 1.25 | 3.8 | 1.47 | 3.4 | .38 | .49 | 63.2 | 71.6 | 1740 | 707778 | | 18 | 178 | 273 | 3373A | .1688 | 1.31 | 3.2 | 1.57 | 2.7 | .48 | .58 | 74.5 | 79.6 | .4002 | 707779 | | 19 | 166 | 273 | .2287A | .1552 | | 2.3 | 1.30 | 2.0 | .47 | .55 | 69.6 | 74.8 | .1227 | 707780 | | 20 | 161 | 273 | .8971A | .1479 | 1.05 | .8 | .98 | 1 | .50 | .52 | 70.9 | 71.8 | 4314 | 707781 | | 21 | 124 | 273 | 1.3061A | .1474 | 1.30 | 4.5 | 1.28 | 2.2 | .35 | .49 | 57.1 | 71.6 | 0237 | 707782 | | 22 | 161 | 273 | 0202A | .1603 | 1.13 | 1.6 | 1.22 | 1.3 | .56 | .57 | 73.7 | 76.7 | .4895 | 707785 | | 23 | 216 | 273 | -1.4548A | .2210 | 1.41 | 2.5 | 1.42 | 1.2 | .56 | .62 | 85.0 | 89.7 | .3493 | 707786 | | 24 | 239 | 273 | -2.1391A | .2740 | .81 | 9 | .46 | -1.3 | .66 | .64 | 94.7 | 93.6 | 3158 | 707787 | | 25 | 177 | 273 | .3522A | .1532 | .86 | -2.2 | .78 | -1.8 | .62 | .55 | 78.5 | 74.0 | 2709 | 707789 | | 26 | 89 | 129 | 1626 | .2470 | 1.12 | . 9 | 1.36 | 1.4 | .54 | .60 | 75.9 | 80.0 | .0024 | 749148 | | 27 | 107 | 144 | 6567 | .2403 | 1.02 | . 2 | .97 | .0 | .55 | .56 | 82.4 | 81.3 | 0011 | 749149 | | 28 | 90 | 144 | .1819 | .2092 | .94 | 7 | .89 | 5 | .57 | .53 | 75.6 | 73.4 | 0011 | 749150 | | 29 | 98 | 129 | 7769 | .2788 | .80 | -1.2 | .74 | 7 | .71 | .63 | 88.8 | 85.2 | .0023 | 749151 | | 30 | 97 | 144 | 1367 | .2180 | .97 | 3 | .92 | 3 | .56 | .54 | 74.8 | 76.1 | 0011 | 749152 | | 31 | 80 | 129 | .3448 | .2297 | .88 | -1.1 | .70 | -1.6 | .64 | .58 | 79.3 | 76.0 | .0025 | 749153 | | 32 | 99 | 129 | 8560 | .2838 | .96 | 2 | 1.15 | .5 | .64 | .63 | 86.2 | 85.9 | .0022 | 749154 | | 33 | 101 | 144 | 3330 | .2252 | .85 | -1.4 | .67 | -1.4 | .64 | .55 | 80.2 | 77.9 | 0011 | 749226 | | 34 | 87 | 144 | .3115 |
.2065 | 1.01 | . 2 | .88 | 7 | .52 | .52 | 70.2 | 72.6 | 0012 | 749227 | | 35 | 49 | 129 | 1.8426 | .2201 | 1.13 | 1.4 | 1.60 | 2.2 | .37 | .46 | 70.7 | 73.4 | .0027 | 749228 | | 36 | 89 | 144 | .2254 | .2083 | 1.23 | 2.4 | 1.19 | 1.0 | .39 | .53 | 67.2 | 73.0 | 0011 | 749229 | | 37 | 63 | 144 | 1.2883 | .2011 | 1.16 | 1.9 | 1.22 | 1.4 | .39 | .47 | 66.4 | 71.4 | 0012 | 749230 | | 38 | 76 | 144 | .7660 | .2009 | .92 | 9 | .87 | 8 | .55 | .50 | 72.5 | 71.1 | 0012 | 749231 | | 39 | 64 | 129 | 1.1327 | .2172 | 1 | 5 | .91 | 4 | .55 | .52 | 70.7 | 72.0 | .0027 | 749719 | | 40 | 89 | 129 | 1626 | .2470 | | 8 | .77 | 9 | .66 | .60 | 79.3 | 80.0 | | 749720 | | 41 | 80 | 129 | .3448 | .2297 | 1.23 | 2.1 | 1.14 | .7 | .46 | .58 | 67.2 | 76.0 | .0025 | 749721 | | | | | | | + | | + | | + | + | | | ++ | | | MEAN | 141.7 | 219.7 | .0603 | .1924 | | .3 | | .0 | • | | 76.0 | 77.5 | | | | P.SD | 51.3 | 66.7 | .8017 | .0394 | .16 | 1.8 | .28 | 1.5 | | | 7.7 | 5.4 | .2531 | | ## **Grade 5 Reading** | ENTRY | TOTAL | TOTAL | | MODEL | IN | FIT | TUO | FIT | PTBISE | RL-EX | EXACT | MATCH | | | |--------|-----------|-------|----------|-------|-----------|------|------------|------|--------|-------|-------|-------|-------------|-------| | NUMBER | SCORE | COUNT | MEASURE | S.E. | MNSQ | ZSTD | MNSQ | ZSTD | CORR. | EXP. | OBS% | EXP% | DISPLACE | READ | | 1 | 179 | 312 | .3658A | .1346 | .88 | -2.3 | .82 | -2.0 | .56 | .46 | 74.9 | 70.7 | .1532 | 65113 | | 2 | 203 | 312 | 1884A | .1455 | .91 | -1.4 | .77 | -1.8 | .62 | .48 | 76.6 | 76.3 | .2673 | 65115 | | 3 | 220 | 312 | 2824A | .1481 | .88 | -1.7 | .85 | -1.1 | .58 | .49 | 78.4 | 77.4 | .0089 | 65115 | | 4 | 165 | 312 | .9229A | .1303 | 1.05 | 1.0 | 1.02 | .3 | .40 | .44 | 62.9 | 68.3 | 1627 | 67382 | | 5 | 245 | 312 | -1.1087A | .1819 | .94 | 5 | .69 | -1.5 | .66 | .52 | 85.6 | 86.9 | .2124 | 6910 | | 6 | 162 | 312 | .8106 | .1306 | 1.07 | 1.5 | 1.06 | .8 | .39 | .44 | 64.3 | 68.4 | .0013 | 6910' | | 7 | 224 | 312 | 8622A | .1696 | 1.24 | 2.2 | 1.27 | 1.3 | .54 | .51 | 79.0 | 84.4 | .5044 | 6910' | | 8 | 179 | 312 | .1194A | .1386 | .89 | -1.8 | .76 | -2.4 | .63 | .47 | 73.5 | 72.9 | .4013 | 6910' | | 9 | 242 | 312 | 7033A | .1627 | 1.09 | .9 | 1.58 | 2.8 | .37 | .50 | 83.2 | 82.5 | 1125 | 6910' | | 10 | 234 | 312 | 4835A | .1545 | .92 | 9 | .80 | -1.3 | .53 | .50 | 81.8 | 79.8 | 1202 | 6910' | | 11 | 182 | 312 | .3358A | .1350 | .87 | -2.5 | .79 | -2.3 | .58 | .46 | 76.6 | 70.9 | .1299 | 6910 | | 12 | 179 | 312 | .6033A | .1320 | .84 | -3.4 | .83 | -2.1 | .56 | .45 | 75.6 | 69.2 | 0864 | 7077 | | 13 | 137 | 312 | 1.6330A | .1334 | 1.32 | 5.3 | 1.52 | 4.9 | .23 | .39 | 60.5 | 70.7 | 3908 | 7077 | | 14 | 110 | 312 | 1.4963A | .1321 | 1.15 | 2.8 | 1.19 | 2.1 | .26 | .40 | 61.5 | 69.9 | .2085 | 7077 | | 15 | 220 | 312 | 1330A | .1441 | .72 | -4.6 | .56 | -4.1 | .67 | .48 | 83.2 | 75.6 | | 7077 | | 16 | 160 | 312 | .6496A | .1316 | 1.03 | .7 | .98 | 2 | .44 | .45 | 65.6 | 69.0 | .1972 | 7077 | | 17 | 183 | 312 | .5154A | .1328 | .99 | 2 | .94 | 7 | .46 | .46 | 67.7 | 69.6 | 0694 | 7078 | | 18 | 202 | 312 | .1669A | .1377 | .91 | -1.6 | .79 | -2.0 | .53 | .47 | 75.9 | 72.4 | 0730 | 7078 | | 19 | 234 | 312 | 3616A | .1505 | .92 | -1.0 | .82 | -1.3 | .51 | .49 | 80.4 | 78.3 | 2452 | 7078 | | 20 | 166 | 312 | .5828A | .1322 | 1.10 | 2.0 | 1.10 | 1.2 | .39 | .45 | 64.9 | 69.2 | .1615 | 7078 | | 21 | 151 | 312 | 1.0638A | .1301 | .99 | 1 | .97 | 4 | .44 | .43 | 68.4 | 68.4 | 0649 | 7078 | | 22 | 126 | 312 | 1.5619A | .1327 | 1.02 | .5 | 1.11 | 1.2 | .39 | .40 | 70.4 | 70.3 | 1354 | 7078 | | 23 | 260 | 312 | -1.1430A | .1838 | .79 | -1.8 | .57 | -2.2 | .60 | .52 | 90.0 | 87.2 | 2716 | 7078 | | 24 | 200 | 312 | .4939A | .1330 | 1.18 | 3.3 | 1.15 | 1.6 | .31 | .46 | 57.7 | 69.8 | 3658 | 7080 | | 25 | 235 | 312 | 5568A | .1571 | .84 | -1.9 | .66 | -2.3 | .61 | .50 | 80.8 | 80.8 | 0712 | 7080 | | 26 | 111 | 173 | .2460 | .1858 | .90 | -1.3 | .81 | -1.3 | .55 | .47 | 74.2 | 73.1 | .0029 | 7491 | | 27 | 40 | 139 | 1.9343 | .2104 | 1.10 | 1.1 | 1.27 | 1.6 | .27 | .36 | 73.4 | 74.0 | 0009 | 7491 | | 28 | 63 | 139 | 1.0135 | .1945 | 1.29 | 3.8 | 1.39 | 3.2 | .21 | .42 | 53.9 | 67.8 | 0009 | 7491 | | 29 | 57 | 173 | 1.9541 | .1824 | 1.34 | 3.9 | 1.60 | 3.4 | .10 | .38 | 64.4 | 72.3 | .0033 | 7491 | | 30 | 113 | 139 | -1.3280 | .2821 | .80 | -1.1 | .50 | -1.7 | .68 | .53 | 88.3 | 88.0 | 0010 | 7491 | | 31 | 70 | 173 | 1.5372 | .1765 | .76 | -3.7 | .70 | -2.6 | .57 | .41 | 82.2 | 70.2 | .0032 | 7491 | | 32 | 41 | 139 | 1.8903 | .2090 | • | .0 | 1.05 | . 4 | .37 | .37 | 72.7 | 73.5 | 0009 | 7492 | | 33 | 71 | 173 | 1.5061 | .1762 | 1.07 | 1.0 | 1.06 | .5 | .36 | .41 | 66.9 | 70.0 | .0032 | 7492 | | 34 | 72 | 173 | 1.4750 | .1760 | 1.38 | 5.0 | 1.44 | 3.2 | .14 | .41 | 54.0 | 69.9 | .0032 | 7492 | | 35 | 86 | 173 | 1.0458 | .1750 | 1.52 | 6.8 | 1.68 | 5.1 | .08 | .44 | 48.5 | 68.7 | .0031 | 7492 | | 36 | 51 | 173 | 2.1586 | .1869 | • | 3.0 | 1.37 | 2.0 | .18 | .36 | 62.6 | 73.7 | | 7492 | | 37 | 85 | 139 | .1635 | .2025 | 1.04 | .5 | 1.03 | .3 | .43 | .46 | 71.9 | 70.5 | 0009 | 7492 | | 38 | 94 | 173 | .7990 | .1766 | .75 | -4.0 | .66 | -3.3 | .63 | .45 | 81.6 | 69.1 | .0030 | 7492 | | 39 | 81 | 139 | .3247 | .1992 | • | | .68 | -2.7 | ' | .45 | 77.3 | 69.3 | | | | 40 | 64 | 139 | .9757 | .1944 | 1.33 | 4.3 | 1.33 | 2.8 | | .42 | 46.9 | 67.7 | | | | 41 | 49 | 139 | 1.5558 | .2007 | • | | 1.08 | .7 | | .39 | 62.5 | 70.3 | | 7552 | | MEAN |
145.0 | 251.1 | .5549 | .1640 |
 1.02 | .3 | +
 1.01 | .0 | +
 | + | 71.2 | 73.3 | ++
 0012 | | | P.SD | 67.4 | 76.8 | .9180 | .0322 | 1 | | .30 | 2.3 | ' | i i | 10.4 | 5.7 | | | ## **Grade 6 Reading** | ENTRY | TOTAL | TOTAL | | MODEL | ' | FIT | | | PTBISE | | | | | | |------------|----------|------------|------------------|-------|----------|------|----------------------|------|--------|-------------|------|--------------|----------|------------------| | NUMBER | SCORE | COUNT | MEASURE | S.E. | MNSQ | ZSTD | MNSQ | ZSTD | CORR. | EXP. | OBS% | EXP% | DISPLACE | READ | | 1 | 222 | 331 | .1017A | .1378 | .91 | -1.4 | .83 | -1.3 | .55 | .48 | 74.5 | 74.9 | 0074 | 651278 | | 1 2 | 149 | 331 | 1.2867A | .1299 | | | .91 | 9 | 1 | .47 | | 71.9 | | | | 3 | 157 | 331 | .7960A | .1304 | | | .97 | 3 | | .48 | | 72.1 | | | | 4 | 222 | 331 | .1565A | .1369 | .83 | -3.0 | .68 | -2.7 | .60 | .48 | 80.2 | 74.5 | 0634 | 673835 | | 5 | 232 | 331 | 3933A | .1488 | 1.08 | 1.1 | .91 | 4 | .52 | .48 | 75.2 | 79.3 | .2977 | 691082 | | 6 | 181 | 331 | .7626A | .1306 | 1.03 | .5 | 1.12 | 1.2 | .47 | .48 | 70.1 | 72.2 | .0604 | 691085 | | 7 | 254 | 331 | 5610A | .1538 | .88 | -1.5 | .67 | -1.9 | .56 | .48 | 82.1 | 81.1 | 0183 | 691087 | | 8 | 196 | 331 | .7246A | .1308 | .97 | 5 | 1.01 | .1 | .49 | .48 | 73.6 | 72.3 | 1611 | 691088 | | 9 | 278 | 331 | 7601A | .1607 | .89 | -1.3 | 1.42 | 1.8 | .37 | .47 | 88.7 | 83.3 | 5027 | 691089 | | 10 | 221 | 331 | .4205A | .1333 | | -3.0 | .70 | -2.8 | .57 | .48 | 77.7 | 73.2 | 3138 | 691091 | | 11 | 135 | 331 | 1.7470A | .1327 | 1.05 | | 1.12 | 1.1 | | .44 | 72.6 | 73.2 | 1435 | 691092 | | 12 | 247 | 331 | 8177A | .1629 | 1.19 | 2.0 | .89 | 4 | | .47 | 77.7 | 83.9 | .4062 | 691094 | | 13 | 239 | 331 | .0571A | .1386 | .81 | | .65 | -2.9 | | .48 | 79.9 | 75.2 | 3101 | 691096 | | 14 | 249 | 331 | 1601A | .1429 | ' | | .85 | 9 | 1 | .48 | | 76.9 | | 691097 | | 15 | 213 | 331 | .2185A | .1359 | | -1.7 | | 5 | | .48 | | 74.2 | | 707809 | | 16 | 183 | 331 | .3438A | .1342 | ' | | 1.36 | 2.7 | | .48 | | 73.6 | | 707812 | | 17 | 132 | 331 | 1.7399A | .1326 | | | 1.36 | 2.8 | | .45 | | 73.1 | | | | 18 | 246 | 331 | 3647A | .1480 | | -1.0 | | .8 | | .48 | | 79.0 | | 707814 | | 19 | 197 | 331 | .9243A | .1299 | ' | | .94 | 6 | | .48 | | 71.9 | | | | 20 | 282 | | -1.6525A | .2065 | ' | | .96 | .0 | | .46 | | 91.1 | | 707817 | | 21 | 174 | 331 | .5570A | .1320 | | | 1.13 | 1.2 | | .48 | | 72.8 | | 707819 | | 22 | 207 | 331 | .2185A | .1359 | • | | .81 | -1.5 | | .48 | | 74.2 | | 707820 | | 23 | 166 | 331 | 1.1756A | .1297 | ' | | 1.04 | . 4 | | .47 | | 71.9 | | | | 24 | 194 | 331 | .5997 | .1316 | • | | 1.32 | 2.7 | 1 | .48 | | 72.7 | | 707822 | | 25 | 231 | 331 | .1327A | .1373 | | | .86 | -1.0 | 1 | .48 | | 74.7 | | 708026 | | 26 | 98 | 177 | .9137 | .1759 | | | .93 | 4 | | .46 | | 72.3 | | 749166 | | 27 | 99 | 154 | .0869 | .2035 | | | .81 | 9 | | .52 | | 74.0 | | 749167 | | 28 | 103 | 177 | .7581 | .1770 | | | 1.36 | 2.3 | 1 | .46 | | 72.7 | | 749168 | | 29 | 127 | 177 | 0426 | .1912 | ' | | .64 | -2.1 | | .43 | | 76.6 | | 749169 | | 30
 31 | 60
64 | 177
154 | 2.1089
1.4207 | .1838 | ' | | 1.52
 1.08 | 2.2 | | .42
.47 | | 74.6
72.1 | | 749170
749218 | | 31 | 109 | 154
177 | .5682 | .1944 | ' | | 1.08 | 1.2 | | .47 | | 73.4 | | 749218 | | 32 | 109 | 177
177 | 1165 | .1791 | • | | 1.18 | -1.5 | | .45 | | 77.2 | | 749219 | | 33 | 108 | 154 | 3069 | .1933 | ' | | ./ <u>+</u>
 1.14 | -1.5 | | .53 | | 77.9 | | | | 35 | 95 | 177 | 1.0063 | .1755 | | | 89 | 8 | 1 | .46 | | 72.1 | | 749233 | | 35
 36 | 84 | 154 | .6747 | .1733 | ' | | 1.33 | 2.0 | 1 | ' | 62.9 | 71.8 | | | | 37 | 105 | 154 | 1704 | .2109 | • | | 2.02 | 3.4 | | .53 | | 76.3 | | 751420 | | 38 | 107 | 177 | .6320 | .1783 | ' | | .77 | -1.6 | 1 | ' | 77.1 | 73.1 | ' | | | 39 | 102 | 154 | 0394 | .2069 | ' | | .65 | -1.7 | 1 | .53 | | 75.0 | | 751422 | | 1 40 | 61 | 154 | 1.5347 | .1956 | ' | | 1.10 | .8 | 1 | .47 | | 72.6 | | | | 41 | 98 | 154 | .1282 | .2025 | | | .64 | -2.0 | | ' | 79.0 | 73.7 | | 751424 | |
 MEAN | 164.8 | 266.4 | .4002 | .1610 | +
 1 | | +
 1.01 | .0 | +
I | +
I | 74.5 | 75.1 | 0018 | | | P.SD | 64.3 | 81.1 | .7563 | .0292 | • | | .29 | 1.7 | ' | l
I | 7.4 | 3.9 | | | | ן ב.טט | 04.3 | 01.1 | . 1303 | .0434 | / | ۷.۷ | . 43 | ±./ | I | I | 7.4 | 3.9 | . 2039 | | ## **Grade 7 Reading** | ENTRY | TOTAL | TOTAL | | MODEL | IN | FIT | OUT | FIT | PTBISE | RL-EX | EXACT | ${\tt MATCH}$ | | | |------------|-------
-------|----------|-------|------------|------|------------|------|------------|--------|-------|---------------|-------------|--------| | NUMBER | SCORE | COUNT | MEASURE | S.E. | MNSQ | ZSTD | MNSQ | ZSTD | CORR. | EXP. | OBS% | EXP% | DISPLACE | READ | |
 1 | 254 | 330 | 5151A | .1547 | +
 .94 | 7 | +
 .80 | -1.3 | +
 .54 | .49 | 81.3 | 81.0 | ++
 1101 | 651358 | | 2 | 167 | 330 | .9711A | .1282 | | | 1.15 | 1.7 | | .45 | | 70.1 | | | | 3 | 222 | 330 | .1965A | .1362 | | | 1 .60 | -4.1 | | .48 | | 73.7 | | 651367 | | 4 | 193 | 330 | .4099A | .1329 | 1.29 | 4.7 | 1.38 | 3.4 | .31 | .47 | | 72.2 | .1848 | 651374 | | 5 | 229 | 330 | 0632A | .1415 | 1.16 | 2.3 | 1.20 | 1.5 | .37 | .48 | 70.6 | 76.0 | 0028 | 651404 | | 6 | 214 | 330 | 2320A | .1458 | 1.16 | 2.1 | 1.06 | .5 | .51 | .49 | 73.2 | 77.7 | .4589 | 675942 | | 7 | 191 | 330 | .6984A | .1297 | .90 | -1.9 | .82 | -2.1 | .52 | .46 | 74.2 | 70.8 | 0717 | 675960 | | | 228 | 330 | .3610A | .1335 | .96 | 8 | .85 | -1.5 | .47 | .47 | 73.2 | 72.5 | 4160 | 691102 | | 9 | 182 | 330 | .4014A | .1330 | .97 | 4 | .98 | 1 | .55 | .47 | 71.9 | 72.3 | .3795 | 691103 | | 10 | 258 | 330 | 7332A | .1630 | .84 | -1.8 | .59 | -2.5 | .63 | .50 | 83.5 | 83.6 | .0078 | 691106 | | 11 | 241 | 330 | 4673A | .1530 | .96 | 5 | .80 | -1.2 | .58 | .49 | 79.0 | 80.5 | .1529 | 691107 | | 12 | 284 | 330 | -1.2866A | .1912 | .77 | -1.8 | .58 | -1.9 | .56 | .51 | 91.6 | 89.2 | 3220 | 691112 | | 13 | 120 | 330 | 1.9401A | .1327 | 1.07 | 1.3 | 1.09 | .8 | .37 | .40 | 71.0 | 72.1 | 1322 | 707858 | | 14 | 131 | 330 | 1.6946A | .1300 | 1.02 | .3 | .99 | 1 | .42 | .41 | 68.7 | 70.8 | 0751 | 707860 | | 15 | 190 | 330 | .6381A | .1303 | .89 | -2.1 | .87 | -1.4 | .54 | .46 | 74.5 | 71.1 | .0061 | 707862 | | 16 | 226 | 330 | 2293A | .1458 | .91 | -1.2 | .76 | -1.8 | .61 | .49 | 76.5 | 77.7 | .2267 | 707863 | | 17 | 183 | 330 | .9253A | .1283 | .97 | 6 | .91 | -1.0 | .47 | .45 | 71.0 | 70.2 | 1636 | 707864 | | 18 | 198 | 330 | .2081A | .1360 | 1.14 | 2.2 | 1.12 | 1.1 | .44 | .48 | 66.5 | 73.6 | .3020 | 707865 | | 19 | 158 | 330 | 1.7205A | .1303 | 1.07 | 1.2 | 1.10 | 1.0 | .46 | .41 | 70.0 | 70.9 | 5350 | 707866 | | 20 | 240 | 330 | 5714A | .1567 | .93 | 8 | .74 | -1.6 | .64 | .50 | 78.7 | 81.7 | .2806 | 707867 | | 21 | 159 | 330 | 1.3171A | .1280 | 1.00 | 1 | .97 | 3 | .43 | .43 | 68.7 | 70.0 | 1585 | 707868 | | 22 | 233 | 330 | 1493A | .1436 | .83 | -2.6 | .68 | -2.6 | .61 | .49 | 79.7 | 76.9 | .0021 | 707869 | | 23 | 254 | 330 | 5714A | .1567 | .97 | 3 | .98 | 1 | .51 | .50 | 82.6 | 81.7 | 0523 | 707872 | | 24 | 190 | 330 | .5685A | .1310 | .94 | -1.1 | .88 | -1.3 | .52 | .47 | 73.2 | 71.4 | .0762 | 707873 | | 25 | 169 | 330 | .9797A | .1281 | 1.31 | 5.6 | 1.33 | 3.6 | .23 | .45 | 57.4 | 70.1 | .0137 | 707874 | | 26 | 106 | 167 | .0271 | .1893 | 1.03 | . 5 | 1.03 | . 2 | .46 | .48 | 69.7 | 71.9 | 0019 | 749172 | | 27 | 94 | 167 | .4406 | .1827 | .96 | 6 | .94 | 4 | .50 | .47 | 71.6 | 70.0 | 0019 | 749173 | | 28 | 47 | 167 | 2.0436 | .1973 | • | 2.6 | 1.36 | 1.7 | .22 | .40 | | 75.6 | 0018 | 749174 | | 29 | 20 | 163 | 3.7403 | .2546 | 1.38 | 2.1 | 3.25 | 4.7 | 15 | .24 | 85.2 | 87.2 | .0036 | 749175 | | 30 | 114 | 167 | 2712 | .1973 | 1 | | .74 | -1.5 | | .49 | | 74.8 | | 749176 | | 31 | 63 | 163 | 1.9224 | .1814 | | | 1.28 | 2.2 | ' | .38 | | 69.5 | | 749177 | | 32 | 114 | 163 | .2030 | .1997 | | | .82 | -1.1 | | .47 | | 76.4 | | 749222 | | 33 | 88 | 163 | 1.1181 | .1802 | | | 1.18 | 1.7 | | .43 | | 69.3 | | | | 34 | 91 | 167 | .5402 | .1818 | • | | .85 | -1.2 | | .47 | | 69.8 | | 749242 | | 35 | 90 | 163 | 1.0530 | .1808 | | | .88 | -1.1 | | .43 | | 69.6 | | 749243 | | 36 | 99 | 167 | .2718 | .1848 | • | | 1.25 | 1.7 | | .48 | | 70.6 | | 749244 | | 37 | 84 | 163 | 1.2471 | .1792 | | | 1.48 | 4.1 | | .42 | | 68.9 | | 751512 | | 38 | 60 | 163 | 2.0219 | .1827 | | | 1.20 | 1.5 | | .37 | | 70.0 | | 751513 | | 39 | 51 | 167 | 1.8913 | .1932 | | | 1.38 | 1.9 | | .41 | | 74.3 | | | | 40 | 108 | 167 | 0452 | .1910 | | | .92 | 5 | | .48 | | 72.5 | | | | 41 | 53 | 163 | 2.2608 | .1870 | 1.19 | 2.3 | 1.29 | 2.0 | .22 | .35 | 65.8 | 72.2 | .0032 | 751518 | |
 MEAN | 156.0 | 265.6 | .6506 | .1606 | +
 1 04 | | +
 1.05 | .1 | +
I | +
 | 71.9 | 74.2 | ++
 0003 | | | P.SD | 70.4 | 80.5 | 1.0022 | .0294 | | | 1.03 | 1.9 | | l
I | 8.0 | 5.0 | | | | עפים ן | 70.4 | 00.5 | 1.0022 | .0294 | · · · / | ۷.۷ | 1 . 42 | 1.9 | I | I | 0.0 | 5.0 | 1 .1/94 | | ## **Grade 8 Reading** | ENTRY | TOTAL | TOTAL | | MODEL | IN | FIT | ruo | FIT | PTBISE | RL-EX | EXACT | MATCH | | | |----------|----------|------------|------------------|----------------|-------|------|--------------|------|--------|-------------|-------|--------------|-----------------|------------------| | NUMBER | SCORE | COUNT | MEASURE | S.E. | MNSQ | ZSTD | MNSQ
+ | ZSTD | CORR. | EXP. | OBS% | EXP% | DISPLACE
++ | READ | | 1 | 214 | 317 | .6102A | .1390 | .82 | -3.0 | .70 | -2.6 | .60 | .45 | 81.8 | 74.7 | .0210 | 651418 | | 2 | 242 | 317 | .4700A | .1417 | .77 | -3.8 | .59 | -3.5 | .55 | .45 | 80.5 | 75.7 | 4450 | 651430 | | 3 | 165 | 317 | 1.2443A | .1317 | 1.05 | .9 | .99 | 1 | .44 | .46 | 68.8 | 71.8 | .2614 | 651434 | | 4 | 209 | 317 | .4593A | .1419 | .78 | -3.6 | .64 | -3.0 | .69 | .45 | 83.4 | 75.8 | .2719 | 651435 | | 5 | 251 | 317 | .2154A | .1475 | .98 | 2 | .90 | 6 | .35 | .44 | 79.5 | 78.0 | 4088 | 651445 | | 6 | 266 | 317 | 5972 | .1777 | .84 | -1.5 | .58 | -1.9 | .55 | .42 | 87.0 | 86.5 | | | | 7 | 179 | 317 | .7410A | .1369 | 1.09 | 1.5 | 1.01 | .1 | | .45 | 67.9 | 73.8 | .5276 | 691114 | | 8 | 233 | 317 | .0796A | .1513 | .91 | -1.1 | .72 | -1.8 | .57 | .44 | 79.9 | 79.4 | .1707 | 691115 | | 9 | 151 | 317 | 2.1980A | .1328 | • | | 1.07 | .8 | .48 | .43 | 71.4 | 72.4 | 4463 | 691116 | | 10 | 237 | 317 | 0184A | .1543 | 1 | | 1.76 | 3.5 | .23 | .43 | 76.0 | 80.4 | | 691117 | | 11 | 268 | 317 | 7802A | .1875 | 1 | | .71 | -1.0 | | .41 | 87.3 | 88.3 | | 691118 | | 12 | 255 | 317 | 1769A | .1597 | | | .65 | -1.9 | | .43 | 82.1 | 82.1 | | 691124 | | 13 | 180 | 317 | 1.0710A | .1330 | • | | 1.04 | . 4 | ' | .46 | 70.5 | 72.3 | | 691129 | | 14 | 144 | 317 | 2.3409A | .1342 | • | | 1.82 | 7.1 | | .42 | | 73.0 | | 707824 | | 15 | 187 | 317 | 1.0613A | .1331 | • | | 1.22 | 2.1 | | .46 | 61.0 | 72.3 | | 707825 | | 16 | 191 | 317 | 1.0533 | .1332 | 1 | | .73 | -2.9 | | .46 | 77.9 | 72.3 | | 707826 | | 17 | 118 | 317 | 2.0258A | .1316 | 1 | | 1.19 | 2.1 | 1 | .44 | | 71.9 | | 707827 | | 18 | 207 | 317 | .8136A | .1359 | • | | .80 | -1.9 | | .45 | | 73.4 | | 707828 | | 19 | 169 | 317 | 1.8585A | .1309 | • | | .96 | 5 | 1 | .44 | 73.4 | 71.5 | | | | 20 | 196 | 317 | .6826A | .1378 | 1 | | 1.23 | 1.8 | 1 | .45 | 70.8 | 74.2 | | 707830 | | 21 | 218 | 317 | .7889A | .1362 | 1 | | .86 | -1.2 | | .45 | | 73.5 | | 707831 | | 22 | 230 | 317 | .1587A | .1490 | 1 | | .61 | -2.7 | | .44 | 83.1 | 78.6 | | 707834 | | 23 | 213 | 317 | .8238A | .1358 | 1 | | 1.42 | 3.3 | 1 | .45 | | 73.3 | | 707835 | | 24 | 109 | 317 | 2.4464A | .1354 | • | | 1.20 | 1.9 | | .41 | 69.8 | 73.4 | | 707838 | | 25 | 143 | 317 | 1.7057A | .1305 | 1 | | 1.05 | .6 | 1 | .45 | | 71.4 | | 707839 | | 26 | 64 | 150 | 1.9905 | .1936 | 1 | | .93 | 5 | | .46 | 71.0 | 72.5 | | 751448 | | 27 | 109 | 150 | .2364 | .2142 | • | | .92 | 3 | 1 | .46 | 76.6 | 77.6 | | 751449 | | 28 | 126 | 167 | .1705 | .2046 | | | .75 | -1.2 | | .42 | 79.8 | 78.8 | | 751451 | | 29 | 98 | 167 | 1.1785 | .1804 | • | | .79 | -1.8 | ' | .44 | 80.4 | 71.5 | | 751452 | | 30 | 108 | 167 | .8450 | .1854 | • | | .86 | 9 | | .43 | | 72.8 | | 751453 | | 31 | 103 | 150 | .5007 | .2061 | 1 | | .71 | -1.5 | 1 | .47 | | 75.6 | | 751454 | | 32 | 48 | 150 | 2.6139 | .2028 | 1 | | 1.26 | 1.5 | | .42 | | 75.0 | | 751455 | | 33 | 99 | 150 | .6671 | .2020 | 1 | | 1.02 | .1 | 1 | .47 | 71.7 | 74.6 | | 751456 | | 34 | 126 | 167 | .1705 | .2046 | 1 | | .50 | -2.7 | 1 | .42 | | 78.8 | | 751458 | | 35 | 76 | 167 | 1.8790 | .1783 | • | | 1.31 | 2.7 | 1 | .42 | | 70.8 | | 751459 | | 36 | 91 | 167 | 1.4037 | .1786 | | | .76 | -2.3 | 1 | .43 | | 71.1 | | 751461 | | 37 | 83 | 150 | 1.2865 | .1932 | • | | 81 | -1.4 | 1 | .48 | 75.2 | 72.2 | | 751462 | | 38 | 62
05 | 167 | 2.3329 | .1826 | 1 | | 1.26 | 2.0 | 1 | .40 | | 72.3
73.8 | | 751463 | | 39 | 95
60 | 150 | .8276 | | 1 | | .78
 1.99 | 7.0 | | .48
.41 | | 73.8 | | 751464 | | 40
41 | 69
58 | 167
150 | 2.1032
2.2178 | .1799
.1960 | | | 1.99 | 2.0 | ' | .41
.45 | | 71.4 | | 751465
751467 | | | 155 2 | 055 1 | 1 01 11 | 1601 | -
 | | + | | + | + | | | ++ | | | MEAN | 155.9 | 255.1 | 1.0171 | .1624 | | | .98 | . 0 | | ļ | 73.6 | 74.9 | | | | P.SD | 65.4 | 77.5 | .8621 | .0283 | .20 | 2.7 | .34 | 2.4 | I | I | 8.1 | 4.0 | .2105 | | ## **Grade 11 Reading** | ENTRY
NUMBER | TOTAL
SCORE | TOTAL
COUNT | MEASURE | MODEL
S.E. | | FIT
ZSTD | OUT | FIT
ZSTD | PTBISE | | EXACT
OBS% | |

 DISPLACE | READ | |-----------------|----------------|----------------|---------|---------------|-----------|-------------|------------|-------------|-----------|----------|---------------|------|--------------------|--------| |
 1 |
224 | 292 | 5842A | .1735 |
 1.02 | .2 | +
 1.06 | .4 |
 .54 |
 57 | 83.3 | 83.1 | +
 1108 | 651429 | | j 2 | 132 | 292 | 1.1711A | .1393 | | | 1.01 | .1 | | .48 | 70.4 | 71.1 | | 651440 | | 3 | 166 | 292 | .7339A | .1421 | .85 | -2.5 | | -2.1 | .60 | .51 | 76.7 | 72.3 | 0248 | 651448 | | j 4 | 185 | 292 | .1906A | .1504 | 1.10 | 1.4 | 1.13 | 1.0 | .50 | .54 | 73.3 | 75.7 | .1207 | 651450 | | j 5 | 163 | 292 | .3253A | .1478 | .97 | 4 | .85 | -1.3 | .60 | .53 | 72.6 | 74.7 | .4464 | 651467 | | j 6 | 221 | 292 | 2977A | .1632 | .81 | -2.3 | .62 | -2.6 | .63 | .56 | 85.6 | 80.2 | 3102 | 673895 | | j 7 | 202 | 292 | 3858A | .1662 | .83 | -1.9 | .59 | -2.7 | .73 | .56 | 81.1 | 81.1 | .3064 | 675987 | | j 8 | 182 | 292 | .2917A | .1484 | .90 | -1.5 | .74 | -2.3 | .61 |
.53 | 77.0 | 74.9 | .0844 | 691130 | | j 9 | 195 | 292 | .1677A | .1509 | 1.21 | 2.8 | 1.56 | 3.7 | .40 | .54 | 68.9 | 75.9 | 0851 | 691132 | | 10 | 211 | 292 | 4190A | .1673 | .95 | 5 | .86 | 7 | .61 | .56 | 81.1 | 81.4 | .1062 | 691135 | | 11 | 231 | 292 | 9722A | .1912 | .86 | -1.2 | .54 | -2.2 | .69 | .58 | 86.3 | 86.8 | | 691139 | | 12 | 188 | 292 | .2917A | .1484 | .91 | -1.4 | .93 | 6 | .58 | .53 | 79.3 | 74.9 | 0487 | 691140 | | 13 | 210 | 292 | 0041A | .1549 | 1.07 | 1.0 | 1.30 | 1.9 | .45 | .55 | 77.8 | 77.4 | | 691141 | | 14 | 228 | 292 | 7030A | .1784 | .86 | -1.4 | .69 | -1.5 | .63 | .57 | 86.3 | 84.2 | 1232 | 691142 | | 15 | 174 | 292 | .6121A | .1435 | .99 | 1 | 1.05 | .5 | .52 | .52 | 74.4 | 72.9 | 0676 | 707877 | | 16 | 186 | 292 | .1049A | .1523 | .90 | -1.4 | .79 | -1.6 | .63 | .54 | 80.4 | 76.4 | .1852 | 707879 | | 17 | 135 | 292 | 1.2041A | .1392 | 1.21 | 3.4 | 1.25 | 2.5 | .34 | .48 | 64.8 | 71.0 | .1131 | 707880 | | 18 | 129 | 292 | 1.1671A | .1393 | 1.38 | 5.9 | 1.48 | 4.5 | .26 | .48 | 55.2 | 71.1 | .2650 | 707882 | | 19 | 177 | 292 | .2144A | .1499 | .89 | -1.5 | .80 | -1.7 | | .54 | 80.4 | 75.5 | .2698 | 707884 | | 20 | 228 | 292 | 6897A | .1779 | .81 | -1.9 | .67 | -1.7 | .65 | .57 | 87.8 | 84.1 | 1369 | 707886 | | 21 | 200 | 292 | .0479A | .1536 | .94 | | .92 | 6 | .57 | .54 | 80.0 | 76.9 | 0843 | 707887 | | 22 | 173 | 292 | .9500A | .1403 | 1.02 | | 1.11 | 1.1 | .48 | .50 | 69.6 | 71.6 | 3841 | 707888 | | 23 | 138 | 292 | 1.4136A | .1391 | 1.47 | 7.1 | 1.65 | 5.6 | | .47 | 54.1 | 71.0 | 1507 | 707890 | | 24 | 144 | 292 | 1.4274A | .1391 | 1.14 | | 1.17 | 1.7 | | .47 | 66.7 | 71.0 | | 707891 | | 25 | 214 | 292 | 1264A | .1581 | .72 | -3.8 | | -3.6 | | .55 | | 78.5 | 2771 | 707892 | | 26 | 99 | 143 | 0049 | .2220 | .95 | | 1.13 | .7 | .55 | .54 | 85.1 | 77.8 | | 749178 | | 27 | 109 | 149 | 4753 | .2363 | .79 | -1.7 | | -2.1 | .70 | .57 | | 81.6 | | 749180 | | 28 | 58 | 143 | 1.7121 | .2004 | | | 1.02 | . 2 | | .45 | 68.7 | 72.1 | | 749181 | | 29 | 99 | 143 | 0049 | .2220 | .85 | -1.4 | | -1.6 | .63 | .54 | 80.6 | 77.8 | 0012 | 749182 | | 30 | 108 | 143 | 4885 | .2435 | | 1 | | 3 | | .55 | 81.3 | 82.4 | | 749183 | | 31 | 62 | 143 | 1.5524 | .1994 | | 2 | | 1 | | .46 | 74.6 | 71.8 | | 749184 | | 32 | 72 | 143 | 1.1559 | .1994 | | | .99 | .0 | | .48 | 66.4 | 71.6 | | 749236 | | 33 | 82 | 149 | .7457 | .1984 | | -1.5 | | -1.3 | | .51 | 74.3 | 71.9 | | 749237 | | 34 | 98 | 143 | .0440 | .2202 | | | 1.04 | .3 | | .54 | 73.9 | 77.4 | | 749238 | | 35 | 85 | 149 | .6267 | .2002 | .81 | -2.3 | | -2.0 | | .52 | 79.4 | 72.5 | | 749248 | | 36 | 52 | 149 | 1.8951 | .1987 | | | 1.62 | 3.1 | | .42 | | 71.4 | | 749249 | | 37 | 105 | 149 | 2620 | .2263 | | | 1.06 | .3 | | .56 | | 79.4 | | 749252 | | 38 | 116 | | -1.0269 | .2785 | | -1.6 | | -1.8 | | .57 | | 87.7 | | 749253 | | 39 | 51 | 149 | 1.9347 | .1993 | | | 1.23 | 1.3 | | .42 | | 71.5 | | 751400 | | 40 | 69 | 149 | 1.2443 | .1945 | | | | | | .48 | | 70.5 | | 751634 | | 41
 | 78
 | 149 | .9014 | .1965 | 1.27
 | 3.0 | 1.24
+ | 1.7 | | | 59.6 | 71.3 | .0026
+ | 751636 | | MEAN | 145.8 | 235.0 | .3825 | .1778 | | | .96 | 1 | | į | 75.6 | 76.2 | | | | P.SD | 56.8 | 71.2 | .7969 | .0345 | .17 | 2.2 | .30 | 2.0 | | | 8.7 | 4.8 | .1662 | | ## **Appendix L: Mathematics Item Bank Difficulties** **Grade 3 Mathematics** | ENTRY | TOTAL | TOTAL | | MODEL | IN | FIT | TUO | FIT | PTBISE | RL-EX | EXACT | MATCH | | | |--------|-------|-------|----------|-------|------|------|------------|------|--------|-------|-------|-------|----------|--------| | NUMBER | SCORE | COUNT | MEASURE | S.E. | MNSQ | ZSTD | MNSQ | ZSTD | CORR. | EXP. | OBS% | EXP% | DISPLACE | MATH | | 1 | 149 | 246 | 0768A | .1700 | .93 | 9 | .84 | -1.0 | .65 | .62 | 74.8 | 75.1 | 2082 | 650590 | | 2 | 166 | 246 | 8407A | .1913 | 1.16 | 1.5 | 1.48 | 1.8 | .60 | .66 | 78.1 | 81.6 | 0041 | 650591 | | 3 | 128 | 246 | .2947A | .1646 | .98 | 2 | 1.02 | .2 | .61 | .60 | 71.0 | 73.3 | .0208 | 650608 | | 4 | 128 | 246 | 0275A | .1691 | 1.09 | 1.2 | 1.04 | .3 | .59 | .62 | 70.5 | 74.8 | .3450 | 650613 | | 5 | 127 | 246 | .4829A | .1630 | 1.27 | 3.5 | 1.45 | 2.8 | .47 | .59 | 61.4 | 72.9 | 1411 | 650661 | | 6 | 183 | 246 | -1.4892A | .2227 | .67 | -2.6 | .40 | -2.2 | .79 | .68 | 90.5 | 87.6 | 0881 | 676133 | | 7 | 108 | 246 | .6726A | .1620 | 1.06 | .9 | 1.06 | .5 | .53 | .57 | | 72.7 | .1713 | 676139 | | 8 | 180 | 246 | -1.8283A | .2449 | 1.25 | 1.4 | .84 | 3 | .73 | .70 | 86.7 | 90.2 | .4035 | 690921 | | 9 | 151 | 246 | .0263A | .1682 | .87 | -1.8 | .80 | -1.3 | .67 | .61 | 80.5 | 74.5 | 3754 | 690922 | | 10 | 156 | 246 | 5685A | .1820 | .93 | 7 | .76 | -1.2 | .69 | .65 | 79.0 | 79.1 | .0683 | 690924 | | 11 | 111 | 246 | .8318A | .1617 | 1.08 | 1.2 | 1.12 | .9 | .52 | .56 | 69.0 | 72.7 | 0656 | 691213 | | 12 | 153 | 246 | 3283A | .1754 | 1.04 | .5 | 1.08 | .5 | .62 | .63 | 75.2 | 77.0 | 0783 | 707612 | | 13 | 72 | 246 | 1.8022A | .1697 | 1.19 | 2.3 | 1.36 | 1.6 | .37 | .48 | 71.9 | 75.4 | .0144 | 707613 | | 14 | 187 | 246 | -1.4051A | .2178 | .70 | -2.4 | .40 | -2.3 | .75 | .68 | 90.5 | 86.9 | 3973 | 707614 | | 15 | 118 | 246 | .2655A | .1650 | .99 | 2 | .91 | 6 | .61 | .60 | 76.2 | 73.4 | .3175 | 707615 | | 16 | 187 | 246 | -2.2238A | .2762 | 1.04 | .3 | .61 | 8 | .78 | .70 | 91.4 | 92.5 | .4273 | 707617 | | 17 | 97 | 246 | 1.5466A | .1659 | 1.32 | 3.9 | 1.49 | 2.4 | .42 | .50 | 63.3 | 74.2 | 4030 | 707618 | | 18 | 157 | 246 | 5524A | .1815 | .93 | 8 | .73 | -1.4 | .68 | .65 | 77.6 | 79.0 | .0190 | 707621 | | 19 | 92 | 246 | .7107A | .1619 | .97 | 4 | .96 | 2 | .56 | .57 | 75.2 | 72.7 | .5529 | 707623 | | 20 | 122 | 246 | .4020A | .1636 | .82 | -2.7 | .75 | -1.9 | .67 | .59 | 81.4 | 73.0 | .0744 | 707624 | | 21 | 142 | 246 | 0058A | .1688 | .91 | -1.2 | .81 | -1.2 | .66 | .62 | 76.2 | 74.7 | 0697 | 707625 | | 22 | 151 | 246 | 4381A | .1782 | 1.02 | .3 | 1.10 | .5 | .63 | .64 | 78.6 | 78.0 | .0963 | 707626 | | 23 | 167 | 246 | 4381A | .1782 | | -2.8 | .64 | -2.1 | .71 | .64 | 84.3 | 78.0 | 4532 | 707627 | | 24 | 135 | 246 | .4470A | .1633 | 1.04 | .6 | .97 | 2 | .58 | .59 | | 73.0 | 3256 | 707628 | | 25 | 99 | 246 | .9360A | .1618 | 1.09 | 1.2 | 1.19 | 1.3 | .50 | .55 | 70.0 | 72.8 | .1431 | 707629 | | 26 | 88 | 131 | 5777 | .2431 | .93 | 6 | .90 | 2 | .63 | .60 | 83.6 | 78.3 | 0014 | 748785 | | 27 | 36 | 115 | 1.5203 | .2445 | 1.14 | 1.4 | 1.19 | .7 | .44 | .50 | 67.0 | 72.6 | .0034 | 748786 | | 28 | 81 | 131 | 1863 | .2308 | 1.07 | .7 | 1.15 | .7 | | .59 | 78.4 | 75.2 | 0015 | 748787 | | 29 | 40 | 115 | 1.2848 | .2408 | 1.25 | 2.4 | 1.45 | 1.5 | .39 | .52 | 64.9 | 71.9 | .0034 | 748788 | | 30 | 75 | 131 | .1241 | .2246 | 1.40 | 3.7 | 1.69 | 2.9 | .38 | .58 | 62.9 | 74.0 | 0014 | 748789 | | 31 | 53 | 115 | .5393 | .2411 | 1.11 | 1.1 | .98 | .0 | .56 | .59 | 67.0 | 72.0 | .0035 | 748791 | | 32 | 62 | 115 | 0045 | .2525 | | -3.0 | .53 | -2.3 | .78 | .64 | 83.0 | 75.1 | .0035 | 748792 | | 33 | 57 | 115 | .3036 | .2448 | | | .77 | -1.0 | | .62 | | 73.0 | | | | 34 | 70 | 131 | .3727 | .2216 | • | | 1.11 | .6 | | .57 | | 73.5 | | | | 35 | 75 | 131 | .1241 | .2246 | • | | 1.19 | 1.0 | ' | .58 | | 74.0 | | | | 36 | 69 | 115 | 4800 | .2707 | 1 | | .49 | -2.0 | | .68 | | 79.4 | | | | 37 | 49 | 131 | 1.3959 | .2235 | 1 | | .87 | 6 | ' | .52 | | 75.1 | | | | 38 | 64 | 115 | 1340 | .2566 | • | | .80 | 8 | | .65 | | 76.2 | | 748800 | | 39 | 61 | 131 | .8095 | .2198 | • | 7 | | 5 | | .55 | | 73.9 | | | | 40 | 79 | 131 | 0809 | .2284 | • | | .96 | 1 | | .59 | | 74.6 | | | | 41 | 51 | 115 | .6549 | .2399 | 1.00 | .0 | .91 | 3 | .58 | .58 | 72.3 | 71.7 | .0035 | 748803 | | MEAN | 109.2 | 198.0 | .0942 | .2033 | 1.00 | .1 | +
 .97 | 1 |
 | | 76.0 | 76.2 | .0015 | | | P.SD | 44.9 | 60.2 | .8701 | .0366 | .17 | 1.7 | .30 | 1.3 | | j | 7.2 | 4.9 | .2095 | | ## **Grade 4 Mathematics** | ENTRY | TOTAL | TOTAL | | MODEL |
 IN | FIT |
TUO | FIT | PTBISE | RL-EX | EXACT | MATCH |
 | | |----------|-----------|-------|-------------------|-------|-----------|------|-----------|-----------|--------|------------|--------------|-------|----------|--------| | NUMBER | SCORE | COUNT | MEASURE | S.E. | MNSQ
+ | ZSTD | MNSQ | ZSTD | CORR. | EXP. | OBS% | EXP% | DISPLACE | MATH | | 1 | 174 | 260 | .2099A | .1580 | .95 | 7 | .87 | 9 | .57 | .56 | 76.6 | 74.0 | 4286 | 650757 | | 2 | 173 | 260 | .2814A | .1569 | .69 | -5.0 | .56 | -4.0 | .72 | .56 | 84.0 | 73.6 | 4736 | 650766 | | 3 | 179 | 260 | 4676A | .1739 | 1.12 | 1.3 | .96 | 1 | .55 | .59 | 74.9 | 78.9 | .1244 | 650770 | | 4 | 152 | 260 | .3913A | .1555 | 1.08 | 1.2 | 1.09 | .7 | .51 | .56 | 68.4 | 73.1 | 0304 | 650772 | | 5 | 164 | 260 | .4012A | .1554 | .79 | -3.3 | .67 | -2.9 | .66 | .55 | 79.7 | 73.0 | 3478 | 650774 | | 6 | 180 | 260 | 5542A | .1768 | .90 | -1.1 | .70 | -1.6 | .68 | .59 | 81.4 | 79.8 | .1832 | 650779 | | 7 | 136 | 260 | 1.0369A | .1517 | 1.04 | .6 | 1.04 | . 4 | .51 | .52 | 71.9 | 71.5 | 2966 | 650783 | | 8 | 164 | 260 | .0776A | .1603 | .79 | -3.2 | | -2.8 | .68 | .57 | 83.1 | 74.8 | 0163 | 650784 | | 9 | 176 | 260 | 4648A | .1738 | .96 | 4 | .93 | 3 | .64 | .59 | 78.8 | 78.9 | .2090 | 650792 | | 10 | 112 | 260 | 1.0955A | .1517 | 1.05 | .8 | 1.08 | .8 | .48 | .52 | 70.1 | 71.6 | .1980 | 650931 | | 11 | 190 | 260 | 5058A | .1752 | | -1.3 | .87 | 6 | | .59 | 84.0 | 79.3 | 1869 | 676143 | | 12 | 155 | 260 | .1309A | .1593 | | -2.3 | | -1.9 | | .57 | | 74.5 | | | | 13 | 164 | 260 | 3401A | .1700 | • | 1 | | 3 | | .58 | 77.1 | 77.8 | | 676160 | | 14 | 170 | 260 | 0971 | .1638 | | | 1.07 | .5 | ' | .57 | | 76.0 | | | | 15 | 181 | 260 | 2611A | .1679 | | | .84 | 9 | ' | .58 | 71.9 | 77.1 | | | | 16 | 141 | 260 | .6828A | .1528 | | | 1.38 | 3.2 | | .54 | | 72.0 | | | | 17 | 134 | 260 | .5579A | .1538 | | | .85 | -1.3 | ' | .55 | 74.5 | 72.4 | ' | 707632 | | 18 | 181 | 260 | 1589A | .1653 | | .7 | | 2 | | .58 | | 76.4 | | 707633 | | 19 | 188 | 260 | 6214 | .1792 | • | | .83 | 8 | | .59 | | 80.5 | ' | 707634 | | 20 | 111 | 260 |
1.0101A | .1517 | • | | 1.09 | .9 | | .52 | | 71.6 | | 707635 | | 21 | 214 | | -2.0531A | .2705 | | | 1.45 | 1.1 | | .63 | 91.3 | 93.1 | | 707636 | | 22 | 198 | 260 | 6015A | .1785 | | | 94 | 2 | | .59 | | 80.3 | ' | | | 23 | 176 | 260 | 6617A | .1807 | | | 1.03 | .2 | | .59 | | 81.0 | | 707638 | | 24 | 94 | 260 | 1.3220A | .1523 | • | | 1.07 | .7 | | .50 | | 72.0 | | 707639 | | 25 | 145 | 260 | .8472A | .1523 | • | | 1.18 | 1.7 | | .53 | 62.8 | 71.7 | | 707640 | | 26 | 179 | 260 | 0566A | .1629 | | | .98 | 1 | ' | .57 | 73.6 | 75.7 | | 707641 | | 27 | 156 | 260 | .2135A | .1580 | | | 90 | 7 | | .56 | | 74.0 | | 707641 | | 28 | 119 | 260 | 1.0508A | .1517 | | | 1.21 | 2.0 | | .52 | | 71.5 | | 707642 | | 29 | 194 | 260 | 9866A | .1947 | | | .78 | 8 | ' | .60 | | 84.5 | | 707645 | | 30 | | | | .1517 | | | | | ' | ' | | | | | | | 119
32 | 260 | 1.0990A
2.5224 | .2471 | | | 1.03 | .3
1.7 | | .52
.43 | | 71.6 | | 708810 | | 31
32 | | 125 | 8981 | .2603 | | | 1.49 | | ' | ' | 74.8 | 79.0 | | 748804 | | | 102 | 135 | | | • | | .87 | 3 | | .58 | | 83.1 | | 748805 | | 33 | 92
63 | 135 | 3041 | .2307 | | | .48 | -2.9 | | .56 | 87.5
65.0 | 76.4 | | 748807 | | 34 | 63 | 135 | 1.0325 | .2078 | | | 1.15 | 1.2 | ' | .51 | | 71.1 | | 748809 | | 35 | 93 | 125 | 8118 | .2741 | | | 1.10 | .4 | ' | .61 | | 83.3 | ' | 748811 | | 36 | 77 | 125 | .1832 | .2326 | • | | .67 | -1.6 | | .58 | 82.0 | 75.3 | | 748812 | | 37 | 41 | 135 | 2.0204 | .2204 | | | 1.00 | .1 | | .43 | | 74.0 | | 748813 | | 38 | 101 | | -1.5266 | .3311 | | | .82 | 2 | | .63 | | 89.6 | | 748814 | | 39 | 90 | | 1995 | .2269 | | | .84 | 7 | | | 70.8 | | | 748815 | | 40 | 81 | | 0385 | .2388 | • | | 1.63 | 2.2 | | | | 76.7 | | 748816 | | 41 | 42 | 125 | 1.9551 | .2310 | | | 1.31 | | | : | 63.1 | | | 748817 | | 42 | 38 | 125 | 2.1730 | .2362 | | | 1.51 | 2.1 | | | 69.4 | | | 748818 | | 43 | 74 | 135 | .5541 | .2103 | • | | .77 | -1.8 | | | 79.2 | 71.5 | | 748819 | | 44 | 72 | 135 | .6421 | .2094 | • | | 1.11 | .9 | | | 67.5 | 71.3 | | | | 45 | 66 | 135 | .9030 | .2079 | | .6 | | 1.3 | | | | | : | 748822 | | 46 | 81 | 125 | 0385 | .2388 | | | .88 | 4 | .62 | ' | 74.8 | 76.7 | .0013 | 748823 | | MEAN | 129.7 | 214.8 | .2336 | .1915 | • | |
 .99 | 1 | | + | | | | | | P.SD | 50.0 | | .9324 | | | | .25 | | | i | 7.2 | | | | ## **Grade 5 Mathematics** | ENTRY | TOTAL | TOTAL | | MODEL |
 IN | FIT |
TUO | FIT |
 PTBISE | RL-EX | EXACT | MATCH |
 | | |--------|-------|-------|----------|-------|-----------|------|-----------|------|-------------|-------|-------|-------|----------------|--------| | NUMBER | SCORE | COUNT | MEASURE | S.E. | MNSQ
+ | ZSTD | MNSQ
+ | ZSTD | CORR.
+ | EXP. | OBS% | EXP% | DISPLACE
+ | MATH | | 1 | 216 | 311 | 1999A | .1438 | .87 | -2.2 | .74 | -1.9 | .57 | .52 | 76.2 | 74.4 | 2436 | 650955 | | 2 | 128 | 311 | 1.0293A | .1355 | 1.19 | 3.1 | 1.28 | 2.6 | .34 | .48 | 67.2 | 72.0 | .2174 | 651002 | | 3 | 243 | 311 | 7191A | .1570 | .94 | 8 | 1.11 | .6 | .47 | .53 | 85.2 | 80.1 | 4152 | 651007 | | 4 | 176 | 311 | .1053A | .1390 | .88 | -2.1 | .80 | -1.8 | .61 | .51 | 73.8 | 72.1 | .2642 | 651009 | | 5 | 218 | 311 | 4217A | .1486 | 1.03 | .4 | 1.17 | 1.1 | .50 | .52 | 76.2 | 76.7 | 0599 | 651010 | | 6 | 250 | 311 | -1.4569A | .1892 | .89 | 9 | .52 | -2.0 | .67 | .54 | 87.2 | 87.9 | .1218 | 651017 | | 7 | 165 | 311 | .1897A | .1381 | 1.08 | 1.4 | 1.11 | 1.0 | .49 | .51 | 69.0 | 71.7 | .3834 | 651022 | | 8 | 241 | 311 | 9017A | .1633 | .80 | -2.4 | .72 | -1.4 | .62 | .53 | 85.9 | 82.2 | 1630 | 651025 | | 9 | 137 | 311 | .9270A | .1352 | 1.05 | .8 | 1.08 | .8 | .45 | .49 | 71.4 | 71.7 | .1534 | 651030 | | 10 | 218 | 311 | 9016A | .1633 | 1.09 | 1.0 | .78 | -1.0 | .62 | .53 | 75.9 | 82.2 | .4292 | 651039 | | 11 | 228 | 311 | -1.1097A | .1718 | 1.15 | 1.5 | .92 | 3 | .59 | .53 | 79.0 | 84.4 | .4019 | 673364 | | 12 | 122 | 311 | 1.6006A | .1402 | 1.02 | .3 | 1.01 | .2 | .48 | .45 | 75.2 | 74.3 | 2375 | 673369 | | 13 | 200 | 311 | 1937A | .1437 | .91 | -1.4 | .99 | .0 | .58 | .52 | 79.7 | 74.4 | .0984 | 676194 | | 14 | 184 | 311 | .3519A | .1366 | 1.00 | .0 | .90 | 9 | .50 | .50 | 67.6 | 71.3 | 1407 | 676196 | | 15 | 213 | 311 | 3690 | .1474 | .90 | -1.5 | .70 | -2.1 | .59 | .52 | 76.6 | 76.1 | 0002 | 676197 | | 16 | 224 | 311 | 3782A | .1476 | .79 | -3.4 | .66 | -2.4 | .63 | .52 | 80.3 | 76.2 | 2490 | 676201 | | 17 | 156 | 311 | .4028A | .1362 | .92 | -1.4 | .84 | -1.5 | .56 | .50 | 73.8 | 71.2 | .3335 | 690951 | | 18 | 253 | 311 | -1.0288A | .1684 | .70 | -3.5 | .61 | -2.0 | .62 | .53 | 90.0 | 83.6 | 4280 | 707649 | | 19 | 202 | 311 | 0615A | .1414 | .85 | -2.7 | .71 | -2.4 | .61 | .51 | 76.6 | 73.3 | 0790 | 707650 | | 20 | 209 | 311 | 4757A | .1500 | .96 | 5 | 1.18 | 1.1 | .58 | .52 | 77.9 | 77.3 | .1969 | 707651 | | 21 | 198 | 311 | .1363A | .1387 | 1.06 | 1.1 | .99 | .0 | .46 | .51 | 67.9 | 72.0 | 1998 | 707652 | | 22 | 226 | 311 | 7834A | .1591 | .96 | 5 | .87 | 6 | .60 | .53 | 79.3 | 80.9 | .1205 | 707653 | | 23 | 132 | 311 | .9858A | .1353 | 1.36 | 5.6 | 1.41 | 3.8 | .26 | .48 | 58.3 | 71.9 | .1867 | 707655 | | 24 | 130 | 311 | 1.1147A | .1359 | .94 | 9 | .92 | 8 | .49 | .48 | 75.2 | 72.3 | .0946 | 707659 | | 25 | 189 | 311 | .5055A | .1357 | .93 | -1.3 | .83 | -1.7 | .54 | .50 | 74.5 | 71.1 | 3972 | 707660 | | 26 | 164 | 311 | .7619A | .1350 | .86 | -2.7 | .79 | -2.2 | .59 | .49 | 77.9 | 71.4 | 1779 | 707662 | | 27 | 167 | 311 | .8550A | .1350 | 1.24 | 4.0 | 1.18 | 1.8 | .35 | .49 | 60.0 | 71.6 | 3281 | 707663 | | 28 | 215 | 311 | 4128 | .1484 | 1.06 | .8 | 1.01 | .1 | .49 | .52 | 75.9 | 76.6 | 0002 | 707664 | | 29 | 249 | 311 | -1.2878A | .1802 | .85 | -1.4 | .61 | -1.6 | .63 | .54 | 87.6 | 86.3 | 0172 | 707665 | | 30 | 170 | 311 | .5055A | .1357 | 1.06 | 1.1 | 1.04 | . 4 | .47 | .50 | 67.2 | 71.1 | 0298 | 707666 | | 31 | 74 | 171 | 1.3223 | .1859 | 1.07 | .9 | 1.03 | .2 | .44 | .49 | 72.7 | 73.9 | .0029 | 748824 | | 32 | 118 | 171 | 2457 | .2018 | 1.16 | 1.6 | 1.51 | 2.1 | .42 | .54 | 77.0 | 77.0 | .0021 | 748825 | | 33 | 58 | 140 | .9969 | .1989 | 1.02 | .3 | 1.10 | .9 | .44 | .45 | 72.1 | 70.2 | 0022 | 748826 | | 34 | 73 | 140 | .4122 | .1976 | 1.25 | | 1.26 | 2.0 | .30 | .47 | 56.6 | 69.4 | 0023 | 748827 | | 35 | 86 | 140 | 1094 | .2044 | 1.02 | .3 | .99 | .0 | .47 | .49 | 72.9 | 71.2 | 0024 | 748828 | | 36 | 70 | 140 | .5290 | .1971 | .99 | .0 | .96 | 3 | .47 | .47 | 69.8 | 69.3 | 0023 | 748829 | | 37 | 91 | 171 | .7404 | .1853 | | .3 | | 2 | | .52 | | 72.8 | | | | 38 | 102 | 171 | .3574 | .1887 | | | 1.00 | .0 | | .53 | | 72.7 | | | | 39 | 37 | 140 | 1.8935 | .2188 | 1.22 | 2.0 | 1.59 | 2.9 | .20 | .39 | 70.5 | 76.3 | 0020 | 748832 | | 40 | 84 | 140 | 0265 | .2028 | .91 | -1.1 | | -1.1 | .55 | .49 | 76.0 | 70.7 | 0024 | 748836 | | 41 | 65 | 171 | 1.6377 | .1888 | | .3 | | .6 | • | .47 | 75.2 | 74.7 | .0031 | 748837 | | 42 | 39 | 171 | 2.6557 | .2111 | 2.00 | 7.2 | 3.32 | 5.9 | 15 | .39 | 63.4 | 79.8 | .0037 | 748838 | | 43 | 97 | 140 | 5987 | .2189 | .93 | 7 | .84 | 7 | .56 | .50 | 75.2 | 75.8 | | | | 44 | 97 | 171 | .5332 | .1867 | .94 | 8 | .92 | 5 | .56 | .52 | 73.3 | 72.6 | | | | 45 | 79 | 140 | .1758 | .1997 | 1.04 | .5 | .93 | 5 | • | .48 | 65.1 | 69.9 | 0024 | 748842 | | 46
 | 122 | 171 | 4128 | .2074 | | -1.5 | | 5 | • | | 81.4 | 78.8 | .0020 | 748843 | | MEAN | 154.7 | 256.9 | .1876 | .1658 | 1.02 | .1 | | 1 | • | ĺ | 74.0 | 75.1 | 0035 | | | P.SD | 64.0 | 74.6 | .8737 | .0280 | .20 | 2.1 | .41 | 1.7 | | | 7.3 | 4.6 | .1974 | | ## **Grade 6 Mathematics** | ENTRY | TOTAL | TOTAL | | MODEL |
 IN | FIT |
TUO | FIT | PTBISE | RL-EX | EXACT | MATCH |
 | | |--------|-----------|-------|----------|-------|------------|------|------------|------|-----------|-------|-------|-------|----------|--------| | NUMBER | SCORE | COUNT | MEASURE | S.E. | | | MNSQ | | CORR. | | OBS% | | DISPLACE | MATH | | 1 | 208 | 331 | 0371A | .1334 | +
 1.29 | 4.8 |
 1.60 | 4.6 |
 .26 | .47 | 63.8 | 72.6 | .0837 | 651322 | | 2 | 228 | 331 | 3205 | .1385 | 1.07 | 1.1 | 1.09 | .7 | .42 | .47 | 72.1 | 75.1 | .0007 | 651323 | | 3 | 231 | 331 | 3968A | .1402 | 1.17 | 2.5 | 1.41 | 2.7 | .34 | .47 | 74.0 | 75.9 | .0193 | 651332 | | 4 | 260 | 331 | 8940A | .1546 | .92 | -1.0 | .80 | -1.1 | .49 | .47 | 81.7 | 81.4 | 1244 | 651334 | | 5 | 143 | 331 | .8917A | .1278 | 1.02 | . 4 | 1.06 | .7 | .43 | .45 | 69.6 | 69.7 | .2313 | 651339 | | 6 | 220 | 331 | 3878A | .1400 | 1.15 | 2.2 | 1.29 | 2.0 | .42 | .47 | 71.8 | 75.8 | .2217 | 651341 | | 7 | 251 | 331 | 8940A | .1546 | .93 | 9 | .74 | -1.5 | .58 | .47 | 80.1 | 81.4 | .0974 | 651348 | | 8 | 256 | 331 | 9881A | .1580 | .95 | 5 | .89 | 6 | .53 | .47 | 81.4 | 82.5 | .0735 | 651350 | | 9 | 176 | 331 | .6168A | .1278 | .98 | 4 | 1.07 | .8 | .48 | .46 | 73.1 | 69.5 | 0342 | 651353 | | 10 | 196 | 331 | .3908A | .1288 | .86 | -2.9 | .76 | -2.8 | .56 | .46 | 76.3 | 69.9 | 1414 | 651392 | | 11 | 224 | 331 | .0454A | .1323 | .94 | -1.0 | .93 | 6 | .47 | .47 | 76.6 | 71.9 | 2961 | 673372 | | 12 | 144 | 331 | .9465A | .1280 | .95 | -1.1 | .92 | 9 | .48 | .45 | 72.8 | 69.8 | .1598 | 673373 | | 13 | 228 | 331 | 4578A | .1416 | • | | 1.17 | 1.2 | | .47 | 74.0 | 76.5 | | | | 14 | 205 | 331 | .0675A | .1320 | .86 | -2.7 | | -2.2 | .58 | .47 | 78.2 | 71.8 | .0304 | 690969 | | 15 | 267 | | -1.1235A | .1635 | | | .97 | 1 | | .47 | | 84.0 | | | | 16 | 260 | | -1.2248A | .1679 | • | -1.1 | | -2.1 | ' | .47 | | 85.1 | | | | 17 | 203 | 331 | 0035A | .1329 | | | 1.03 | . 3 | ' | .47 | 71.8 | 72.3 | | 707667 | | 18 | 239 | 331 | 4392A | .1412 | • | | .74 | -2.0 | | .47 | | 76.3 | | | | 19 | 166 | 331 | 1.1363A | .1289 | 1.12 | 2.1 | 1.14 | 1.5 | .41 | .45 | 67.0 | 70.5 | 3897 | 707670 | | 20 | 175 | 331 | .7350A | .1277 | | | 1.15 | 1.7 | ' | .46 | | 69.4 | | | | 21 | 253 | 331 | 8078A | .1516 | • | | .85 | 9 | | .47 | 82.7 | 80.4 | 0381 | 707672 | | 22 | 178 | 331 | .9984A | .1282 | | | .96 | 5 | ' | .45 | | 70.0 | | | | 23 | 150 | 331 | .6760A | .1277 | • | | .88 | -1.5 | |
.46 | 71.5 | 69.4 | | | | 24 | 193 | 331 | .4651A | .1284 | | -2.2 | | -2.2 | ' | .46 | 72.1 | 69.7 | | 707676 | | 25 | 148 | 331 | .7529A | .1277 | | | .99 | 1 | ' | .46 | 71.8 | 69.5 | | 707677 | | 26 | 212 | 331 | 0259 | .1333 | | | 1.07 | .6 | ' | .47 | 71.5 | 72.5 | | | | 27 | 196 | 331 | .4994A | .1282 | | | 1.23 | 2.5 | | .46 | 59.6 | 69.6 | | 707679 | | 28 | 158 | 331 | .8013A | .1277 | | | .99 | 1 | ' | .46 | 68.9 | 69.5 | | 707680 | | 29 | 165 | 331 | .5210A | .1281 | • | | 1.08 | .9 | ' | .46 | | 69.6 | | 707683 | | 30 | 189 | 331 | .4651A | .1284 | | | .82 | -2.1 | ' | .46 | | 69.7 | | | | 31 | 105 | 179 | .4634 | .1726 | | | .72 | -2.5 | ' | .42 | 79.4 | 70.2 | | | | 32 | 118 | 179 | .0647 | .1785 | | | 1.09 | .7 | ' | .42 | 67.4 | 72.6 | | 748845 | | 33 | 107 | 179 | .4037 | .1732 | | | 1.21 | 1.6 | | .42 | | 70.4 | | | | 34 | 83 | 152 | .2861 | .1934 | • | -2.2 | | -1.5 | | .50 | 78.1 | 69.5 | | | | 35 | 50 | 152 | 1.5392 | .2036 | 1 | | 1.21 | 1.4 | ' | .45 | | 74.1 | ' | | | 36 | 77 | 152 | .5087 | .1921 | • | | 1.06 | .5 | | .49 | 69.3 | 69.1 | | 748851 | | 37 | 84 | 152 | .2486 | .1938 | | | .92 | 5 | | .50 | | 69.7 | | 748852 | | 38 | 74 | 179 | 1.3734 | .1733 | .96 | | .97 | 2 | | .41 | 77.1 | 71.2 | | | | 39 | 75 | 179 | 1.3434 | .1730 | | -1.0 | .98 | 1 | ' | | 76.6 | | | 748856 | | 40 | 58 | | 1.2192 | .1970 | | | .90 | 7 | | | | 71.6 | | 748858 | | 41 | 54 | 152 | 1.3766 | .1999 | | | 1.07 | . 5 | | : | 73.7 | | | 748859 | | 42 | 101 | 152 | 4268 | .2075 | | | .56 | -2.4 | | | 83.9 | | : | 748860 | | 43 | 120 | 179 | .0006 | .1798 | • | | 1.02 | . 2 | | | 72.0 | 73.2 | | 748861 | | 44 | 155 | | -1.4642 | .2479 | • | | .53 | -1.6 | | | 88.6 | 88.4 | | | | 45 | 106 | 179 | .4336 | .1729 | • | | 2.05 | | 05 | | 49.1 | | | 748863 | | 46 | 84 | 152 | .2486 | .1938 | 1.10 | 1.4 | 1.03 | .3 | .43 | | 64.2 | | 0007 | 748864 | | MEAN |
164.6 | 273.4 | .2093 | .1557 | • | .1 | +
 1.00 | .0 | | +
 | 73.0 | 73.3 | .0012 | | | P.SD | 64.0 | | | .0295 | | | .26 | | | i | 7.5 | | | | ## **Grade 7 Mathematics** | ENTRY | TOTAL | TOTAL | | MODEL | IN | FIT |
TUO | FIT | PTBISE | RL-EX | EXACT | MATCH |
 | | |------------|-----------|-------|------------------|-------|-----------|------|-----------|-------|--------|-------------|-------|--------------|----------|--------| | NUMBER | SCORE | COUNT | MEASURE | S.E. | MNSQ
+ | ZSTD | MNSQ | ZSTD | CORR. | EXP. | OBS% | EXP% | DISPLACE | MATH | | 1 | 216 | 338 | 0860A | .1374 | .95 | 8 | .92 | 6 | .56 | .51 | 77.3 | 74.6 | .1063 | 651845 | | 2 | 249 | 338 | 9423A | .1600 | 1.09 | 1.0 | .86 | 7 | .57 | .52 | 79.2 | 82.9 | .3022 | 651852 | | 3 | 255 | 338 | -1.1108A | .1668 | 1.00 | .1 | .68 | -1.5 | .65 | .52 | 81.7 | 84.7 | .3319 | 652047 | | 4 | 209 | 338 | .1443 | .1341 | 1.19 | 3.0 | 1.22 | 1.8 | .39 | .51 | 62.1 | 73.4 | .0010 | 652117 | | 5 | 253 | 338 | 7156A | .1523 | .85 | -1.9 | .73 | -1.6 | .61 | .52 | 82.0 | 80.4 | 0247 | 652118 | | 6 | 226 | 338 | .0889A | .1348 | 1.16 | 2.6 | 1.33 | 2.6 | .38 | .51 | 66.2 | 73.7 | 2671 | 652120 | | 7 | 226 | 338 | 5296A | .1469 | 1.00 | .0 | .81 | -1.2 | .62 | .52 | 73.5 | 78.4 | .3665 | 652122 | | 8 | 259 | 338 | 8939A | .1583 | .91 | -1.0 | .65 | -2.0 | .59 | .52 | 83.0 | 82.4 | .0099 | 652129 | | 9 | 246 | 338 | 3521A | .1426 | .95 | 8 | 1.09 | .6 | .51 | .52 | 80.1 | 76.7 | 2376 | 652131 | | 10 | 216 | 338 | 0982A | .1376 | .98 | 3 | .89 | 8 | .55 | .51 | 71.0 | 74.7 | .1188 | 652140 | | 11 | 177 | 338 | .9853A | .1292 | .94 | -1.1 | .93 | 8 | .54 | .49 | 75.4 | 71.8 | 2863 | 690983 | | 12 | 208 | 338 | 2995A | .1415 | 1.04 | . 6 | 1.01 | .1 | .59 | .52 | 74.8 | 76.2 | .4695 | 690986 | | 13 | 258 | | -1.0981A | .1663 | • | | .75 | -1.1 | | .52 | 82.6 | 84.6 | | 690991 | | 14 | 239 | 338 | 6154A | .1493 | | | .80 | -1.2 | | .52 | | 79.3 | | | | 15 | 143 | 338 | .9204A | .1292 | • | | 1.27 | 2.9 | | .49 | | 71.8 | | | | 16 | 217 | 338 | .3706A | .1317 | | | .81 | -2.0 | | .51 | | 72.7 | | | | 1 17 | 274 | | -1.5301A | .1877 | | | .65 | -1.4 | | .52 | 86.8 | 88.7 | | | | 18 | 164 | 338 | .8839A | .1292 | | | 1.09 | 1.0 | | .49 | | 71.8 | | | | 19 | 166 | 338 | .6018A | .1301 | | | .89 | -1.2 | : | .50 | 76.3 | 72.2 | | | | 20 | 176 | 338 | .9642A | .1292 | | | .75 | -3.1 | • | .49 | | 71.8 | | | | 21 | 199 | 338 | .7080A | .1296 | | | .90 | -1.1 | : | .50 | 74.1 | 72.0 | | 707690 | | 22 | 159 | 338 | .9540A | .1292 | | | 1.26 | 2.8 | | .49 | | 71.8 | | | | 23 | 187 | 338 | .6373A | .1299 | | | .93 | 8 | | .50 | 72.9 | 72.1 | | 707692 | | 23 | 175 | 338 | 1.1295A | .1295 | • | | .95 | 5 | • | .48 | 71.3 | 71.8 | | 707693 | | 25 | 137 | 338 | 1.1732A | .1296 | | | 1.20 | 2.2 | | .48 | 65.0 | 71.9 | ' | 707694 | | 25 | 227 | 338 | 1807A | .1391 | | | .88 | 9 | | .52 | | 75.3 | | | | 20 | 189 | 338 | .5050A | .1306 | | | 1.38 | 3.6 | • | .50 | 66.6 | 72.4 | | | | 28 | 171 | 338 | 1.1384A | .1295 | | | 1.00 | .1 | | .48 | 71.9 | 71.8 | | 707698 | | 20 | 211 | 338 | .1083 | .1345 | | | 1.29 | 2.4 | | .51 | 65.3 | 73.6 | | 707698 | | 30 | | | | .1345 | | | | 2.4 | | ' | | | | | | 30
 31 | 139
93 | 338 | 1.4536A
.3513 | .1802 | | | 1.22 | 5 | | .46
.49 | | 72.4
70.6 | | | | | | 173 | | | | | .93 | | | ' | | | | | | 32 | 109 | 165 | .1709 | .1977 | | | 1.03 | . 2 | | .52 | 73.7 | 76.1 | | 748866 | | 33 | 60
122 | 173 | 1.4394 | .1873 | • | | 1.25 | 1.6 | | .46 | | 73.8 | | 748868 | | 34 | 123 | 165 | 4275 | .2183 | 1 | | .79 | 9 | | .53 | | 80.6 | | 748869 | | 35 | 17 | 165 | 3.8495 | .2737 | • | | 4.15 | 4.8 | : | .24 | | 89.3 | ' | | | 36 | 101 | 173 | .0887 | .1825 | | | .94 | 4 | | .49 | 65.2 | 70.8 | | 748871 | | 37 | 53 | 173 | 1.6916 | .1926 | • | | 1.14 | .9 | | .44 | | 75.5 | | 748873 | | 38 | 67 | 165 | 1.6347 | .1840 | | | 1.26 | 2.0 | | .44 | | 71.1 | | 748875 | | 39 | 69 | | 1.1319 | .1828 | | | 1.11 | .9 | | | 69.6 | 72.5 | | | | 40 | 93 | 165 | .7563 | .1865 | | . 8 | | . 8 | | | 71.2 | 72.6 | | 748877 | | 41 | 70 | 173 | 1.0986 | .1824 | 1 | | .96 | 3 | : | : | 73.9 | 72.3 | | 748878 | | 42 | 109 | 165 | .1709 | .1977 | | | 1.01 | .1 | : | | 72.4 | | | | | 43 | 132 | | -1.1002 | .2188 | • | | .75 | 9 | : | | 84.5 | 82.2 | | | | 44 | 96 | 165 | .6512 | .1880 | • | | .93 | 5 | • | ' | 73.1 | 73.2 | | | | 45 | 70 | 165 | 1.5335 | .1835 | | | 1.30 | 2.3 | | | 60.9 | 70.9 | | | | 46 | 92 | 173 | .3837 | .1800 | • | | .93 | 5
 | • | | 75.2 | 70.6 | 0002 | 748884 | |
 MEAN | 163.6 | 279.2 | .3856 | .1596 | | |
 1.06 | .2 | | +
I | 73.5 | 75.3 | .0107 | | | P.SD | 67.6 | 80.5 | .9697 | | | | .50 | | | | 6.9 | 4.9 | | | | P.5D | 0/.0 | 00.5 | . 707/ | .0321 | 1 .13 | 1./ | 1 .50 | 1./ | I | I | 0.9 | 4.9 | 1 1995 | | ## **Grade 8 Mathematics** | ENTRY | TOTAL | TOTAL | | MODEL | l in | FIT | OUT | FIT | PTBISE | RL-EX | EXACT | MATCH | | | |--------|------------|------------|---------------------|-------|------------|------|------------|-------|------------|-------------|-------|--------------|-------------|----------| | NUMBER | SCORE | COUNT | MEASURE | S.E. | ' | ZSTD | | | CORR. | | OBS% | | DISPLACE | MATH | |
1 | 232 | 325 | 1619A | .1377 | +
 .86 | -2.4 | + | -1.9 | +
 .53 | .47 | 79.7 | 74.2 | ++
 2778 | 6521 | | 2 | | | 1019A
5082A | | ' | | .64 | | ' | ' | | | ' | | | 3 | 249 | 325 | | .1445 | ' | | .74 | -2.6 | | .46 | | 77.0 | | | | 4 | 231 | 325 | 8205A | | | | | | ' | .46 | 76.5 | 80.2 | | | | 5 | 207 | 325 | .0987A | .1342 | ' | | 1.31 | 2.7 | ' | .48 | | 72.8 | | | | 6 | 214 | 325 | 5336A | .1451 | ' | | .85 | | ' | .46 | | 77.2 | | | | 7 | 145
262 | 325 | 1.3931A
-1.2620A | .1330 | ' | | 1.21 | 2.2 | | .45 | 73.2 | 72.8
85.0 | | | | 8 | 133 | 325
325 | 1.3263 | .1696 | | | 1.19 | .9 | | .44
.46 | | 72.7 | | | | 9 | | | 5304A | | ' | | | | | ' | | | | | | | 236 | 325 | 5304A
.9074A | .1451 | ' | | .88 | 7 | ' | .46 | | 77.2 | ' | | | 10 | 158 | 325 | | .1305 | ' | | .96 | 5 | | .47 | 73.2 | 71.6 | | | | 11 | 196 | 325 | .1583A | .1335 | ' | | 1.54 | 4.5 | ' | .48 | | 72.6 | | | | 12 | 243 | 325 | 5898A | .1465 | ' | | .74
.71 | -1.7 | | .46 | | 77.8 | | | | 13 | 232 | 325 | 2212A | .1387 | ' | | | -2.4 | | .47 | | 74.6 | | | | 14 | 266 | | -1.2319A | .1683 | ' | | 1.10 | .5 | | .45 | 84.8 | 84.7 | | | | 15 | 249 | 325 | 8340A | .1535 | ' | -1.1 | | 5 | | .46 | | 80.3 | | | | 16 | 129 | 325 | 1.1172A | .1312 | ' | | 1.29 | 3.2 | | .46 | | 72.1 | | | | 17 | 245 | 325 | 3026A | .1402 | ' | | 1.15 | 1.1 | | .47 | | 75.2 | | | | 18 | 165 | 325 | .8765A | .1304 | ' | | 1.00 | .1 | | .47 | 71.0 | 71.5 | | 7077 | | 19 | 182 | 325 | .6674A | .1305 | ' | | .94 | 7 | ' | .47 | | 71.4 | | | | 20 | 224 | 325 | 2659A | .1395 | ' | -3.1 | | -2.5 | ' | .47 | | 74.9 | | 7077 | | 21 | 231 | 325 | 2260A | .1388 | ' | | 1.04 | . 3 | ' | .47 | | 74.7 | | 7077 | | 22 | 242 | 325 | 5971A | .1467 | ' | -3.6 | | -2.9 | | .46 | 83.2 | 77.8 | | 7077 | | 23 | 161 | 325 | .7948A | .1304 | | -1.2 | 1 | -1.7 | ' | .47 | | 71.4 | | | | 24 | 184 | 325 | .4525 | .1313 | ' | | .84 | -1.8 | | .48 | 77.4 | 71.6 | | | | 25 | 145 | 325 | .6355A | .1306 | ' | | 1.02 | .3 | ' | .47 | 70.0 | 71.4 | | 7077 | | 26 | 254 | 325 | 8411A | .1537 | • | | 1.09 | . 5 | | .46 | 81.9 | 80.4 | | 7077 | | 27 | 203 | 325 | .1154A | .1340 | ' | | .82 | -1.7 | ' | .48 | | 72.8 | | | | 28 | 188 | 325 | .3796A | .1317 | ' | | 1.57 | 5.2 | ' | .48 | | 71.8 | | | | 29 | 184 | 325 | .5720A | .1308 | | | 1.40 | 4.1 | ' | .48 | | 71.4 | | 7077 | | 30 | 245 | | -1.0268A | .1601 | • | | .97 | 1 | | .45 | 78.4 | 82.5 | | 7077 | | 31 | 117 | 173 | 1027 | .1870 | • | | 1.06 | . 4 | | .45 | 72.0 | 73.5 | | | | 32 | 78 | 173 | 1.1595 | .1791 | | | 1.07 | .7 | | .46 | | 71.6 | | | | 33 | 86 | 152 | .3669 | .1938 | ' | | .83 | -1.2 | | .49 | 74.0 | 72.5 | | 7490 | | 34 | 123 | 173 | 3181 | .1924 | ' | | 1.06 | . 4 | ' | .44 | | 75.1 | | | | 35 | 68 | 152 | 1.0327 | .1925 | | | 1.03 | . 3 | ' | .47 | 69.2 | 72.7 | | | | 36 | 109 | 152 | 5644 | .2130 | ' | | .87 | 5 | | .49 | |
77.5 | | | | 37 | 68 | 173 | 1.4859 | .1827 | ' | | 1.42 | 3.1 | ' | .45 | 64.6 | 72.9 | | 7490 | | 38 | 127 | | -1.5539 | .2654 | | | .53 | -1.3 | | | 88.4 | 87.4 | | | | 39 | 121 | | 2449 | .1904 | : | 9 | | 7 | | | | 74.5 | | | | 40 | 118 | | -1.0058 | .2314 | ' | | | -1.6 | | | 85.6 | 81.9 | | | | 41 | 63 | 173 | 1.6552 | .1855 | • | .6 | | .7 | | .44 | | 73.8 | | | | 42 | 93 | 152 | .1001 | .1970 | | | 1.35 | 2.0 | | | 61.0 | 73.3 | | | | 43 | 115 | 173 | 0333 | .1856 | | | 1.10 | .7 | | | 64.0 | 73.1 | | | | 44 | 111 | 152 | 6565 | .2163 | | -2.6 | | -2.2 | | | 84.2 | 78.3 | | | | 45 | 83 | 152 | .4789 | .1929 | ' | | .83 | -1.2 | | | 74.7 | | | | | 46
 | 105 | 173 | .3005 | .1805 | ' | .2 | .93 | 5
 | .45
+ | .46 | 66.5 | 71.5 | .0028 | 7490
 | | MEAN | 170.0 | 268.5 | .0357 | .1611 | | | .98 | .0 | | | 74.3 | 75.3 | | | | P.SD | 62.5 | 77.6 | .7928 | .0319 | | | .25 | 1.9 | | i | 7.5 | 4.1 | | | **Grade 11 Mathematics** | ENTRY | TOTAL
SCORE | TOTAL
COUNT | MEASURE | MODEL
S.E. | | FIT
ZSTD |
 OUT
 MNSO | |
 PTBISE
 CORR. | | | |

 DISPLACE | MATH | |-------|----------------|----------------|----------|---------------|----------|-------------|--------------------|------|-----------------------|-----|------|-------------|--------------------|--------| | | | | | | + | | + | | + | | | | + | | | 1 | 255 | | -1.5986A | .1962 | | -2.7 | | -2.9 | | .59 | | 88.5 | | 651135 | | 2 | 241 | 311 | -1.1449A | .1737 | | -1.6 | | -2.0 | | .58 | 86.5 | 84.2 | | 651138 | | 3 | 162 | 311 | .3105A | .1384 | | | 1.50 | 3.7 | | .53 | 59.7 | 72.6 | | | | 4 | 178 | 311 | .1526A | .1401 | | | 1.35 | 2.6 | | .53 | 70.8 | 73.2 | | | | 5 | 235 | 311 | -1.0414 | .1694 | | | .80 | 9 | | .57 | | 83.2 | | | | 6 | 205 | 311 | .0376A | .1416 | | | .71 | -2.5 | | .54 | | 73.9 | | 651169 | | 7 | 237 | | -1.1449A | .1737 | | 9 | | -1.3 | | .58 | 84.4 | 84.2 | | 651173 | | 8 | 216 | 311 | 5340A | .1530 | | 8 | | -1.2 | | .56 | 79.5 | 78.4 | | | | 9 | 169 | 311 | .6205A | .1364 | | | .98 | 1 | | .51 | 72.9 | 71.8 | | | | 10 | 244 | | -1.3175 | .1814 | .90 | 9 | | -1.5 | | .58 | 85.8 | 85.9 | | 651227 | | 11 | 211 | 311 | 3402A | .1484 | | | .94 | 3 | | .55 | 79.2 | 76.7 | | | | 12 | 210 | 311 | 3777A | .1492 | | -2.6 | | -2.6 | | .55 | 79.9 | 77.0 | | 651311 | | 13 | 216 | 311 | 1986A | .1455 | | -1.5 | | 6 | | .55 | 78.5 | 75.6 | | 651319 | | 14 | 176 | 311 | .3291A | .1383 | | -2.9 | | -2.0 | | .52 | 80.6 | 72.5 | | | | 15 | 188 | 311 | .3292A | .1383 | | -2.0 | | -1.8 | | .52 | 76.4 | 72.5 | | 673387 | | 16 | 200 | 311 | 1950 | .1454 | | -2.4 | | -2.1 | | .55 | 81.9 | 75.6 | | | | 17 | 242 | | -1.2527 | .1784 | | -1.4 | | 6 | | .58 | | 85.3 | | 676351 | | 18 | 185 | 311 | 1924A | .1454 | | | .91 | 6 | | .55 | 72.6 | 75.6 | | 676354 | | 19 | 247 | | -1.3974A | .1854 | | | 1.02 | . 2 | | .58 | 88.2 | 86.7 | | | | 20 | 219 | 311 | 6223 | .1554 | | | .74 | -1.6 | | .56 | 79.2 | 79.2 | | 691026 | | 21 | 184 | 311 | 2028A | .1456 | | | 1.25 | 1.7 | | .55 | 70.1 | 75.6 | | 691027 | | 22 | 143 | 311 | .7679A | .1360 | | | 1.23 | 1.9 | | .50 | 67.0 | 71.6 | | 707721 | | 23 | 196 | 311 | 0300A | .1426 | | | 1.15 | 1.1 | | .54 | 78.5 | 74.4 | | 707722 | | 24 | 138 | 311 | .4989A | .1370 | | 4.3 | 1.59 | 4.4 | | .52 | 62.2 | 72.0 | | 707724 | | 25 | 212 | 311 | 4659A | .1513 | | | 1.19 | 1.2 | | .56 | 72.9 | 77.8 | | 707725 | | 26 | 199 | 311 | 0978A | .1437 | | | .64 | -3.1 | | .54 | 81.6 | 74.9 | | 707727 | | 27 | 140 | 311 | .6023A | .1365 | | | 1.17 | 1.4 | | .51 | 66.7 | 71.8 | | | | 28 | 166 | 311 | .6023A | .1365 | | | .72 | -2.7 | | .51 | 77.8 | 71.8 | | 707729 | | 29 | 174 | 311 | .6047A | .1365 | | | .96 | 3 | | .51 | 71.5 | 71.8 | | 707732 | | 30 | 154 | 311 | .7679A | .1360 | | | 1.45 | 3.5 | | .50 | 55.6 | 71.6 | | 707734 | | 31 | 88 | 157 | .4431 | .1923 | | | | -2.4 | | .51 | 78.6 | 71.6 | | 749073 | | 32 | 85 | 157 | .5533 | .1912 | | | 1.64 | 3.7 | | .50 | 59.3 | 71.2 | | 749075 | | 33 | 67 | 154 | .9295 | .1951 | | | 1.63 | 2.8 | | .50 | 61.5 | 72.3 | | 749076 | | 34 | 97 | 157 | .1021 | .1977 | | . 3 | | .1 | | .52 | 68.3 | 73.2 | | 749077 | | 35 | 125 | | -1.8301 | .2892 | | | .54 | -1.1 | | .61 | 90.2 | 89.5 | | | | 36 | 68 | 154 | .8914 | .1950 | | | 1.16 | .8 | | .50 | 67.1 | 72.3 | | 749079 | | 37 | 63 | 154 | 1.0822 | .1958 | | | 1.20 | 1.0 | | .49 | 73.4 | 72.4 | | | | 38 | 84 | 157 | .5898 | .1909 | | | .68 | -2.5 | | .50 | 82.1 | 71.1 | | 749081 | | 39 | 102 | 157 | 0976 | .2024 | | . 4 | | 2 | | .53 | 71.7 | 74.7 | | 749083 | | 40 | 119 | | -1.3875 | .2565 | | | 1.00 | .1 | | .60 | 87.4 | 85.6 | | | | 41 | 89 | 154 | .0799 | .2008 | | | 1.09 | .5 | | .55 | 69.2 | 73.9 | | 749085 | | 42 | 32 | 157 | 2.6470 | .2266 | | | 2.20 | 3.8 | | .35 | 76.6 | 81.2 | | 749086 | | 43 | 75 | 157 | .9146 | .1896 | | | .97 | 2 | | .48 | 73.1 | 70.8 | | | | 44 | 60 | 154 | 1.1977 | .1967 | | | .88 | 5 | | .48 | 74.1 | 72.6 | | 749088 | | 45 | 64 | 154 | 1.0439 | .1956 | | 2.7 | 1.24 | 1.2 | | .49 | | 72.3 | | | | 46 | 65 | 157 | 1.2757 | .1911 | 11.02 | . 2 | 1.02 | . 2 | .43 | .46 | 71.7 | 71.5 | .0012 | 749091 | | MEAN | 157.1 | 256.9 | .0414 | .1705 | +
 1 | | +
 1.00 | .0 | +
 | ۱ | 75 4 | 76 1 | 0044 | | | P.SD | 63.7 | 74.1 | | .0338 | 1 12 | | 35 | | l | ŀ | 2 6 | 76.1
5.4 | 1 .1603 | | | ר.טע | 03.7 | /4.1 | .0903 | .0338 | 1 | 4.4 | 1 .33 | ∠.∪ | I | | 0.0 | 5.4 | 1 .1003 | | # **Appendix M: Science Item Bank Difficulties** **Grade 5 Science** | ENTRY | TOTAL | TOTAL | | MODEL |
 IN | FIT |
 OUT |
FIT |
 PTBISE |
RL-EX | EXACT | MATCH |
 | | |------------------------|-----------|------------|---------------|-------|------------|------|--------------|----------|-------------|-------------|-------|-------|-------------|------------------| | NUMBER | SCORE | COUNT | MEASURE | S.E. | ' | | MNSQ | | CORR. | | OBS% | | DISPLACE | SCIE | |
 1 | 166 | 308 | 6959A | .1414 | 1.07 | 1.2 | 1.26 | 2.1 | .51 | .53 | 72.2 | 73.5 | .2560 | 651050 | | 2 | 153 | 308 | 2053A | .1386 | 1.30 | 4.7 | 1.99 | 7.4 | .33 | .51 | 62.3 | 72.2 | .0149 | 651078 | | 3 | 200 | 308 | 8963A | .1437 | .73 | -4.7 | .59 | -3.8 | .69 | .54 | 82.6 | 74.2 | 2424 | 651113 | | 4 | 200 | 308 | 8716A | .1434 | 1.10 | 1.6 | 1.05 | .5 | .47 | .54 | 70.1 | 74.1 | 2676 | 676460 | | 5 | 215 | 308 | -1.7000A | .1610 | 1.23 | 2.6 | 1.74 | 3.3 | .47 | .56 | 77.2 | 80.1 | .2293 | 676461 | | 6 | 179 | 308 | -1.0292A | .1457 | 1.04 | .6 | 1.06 | .5 | .56 | .55 | 74.4 | 74.9 | .3349 | 691146 | | 7 | 213 | 308 | -1.4451A | .1540 | | -2.0 | | -1.8 | | .56 | 81.1 | 77.7 | | | | 8 | 191 | 308 | 6072A | .1406 | | | 1.26 | 2.1 | ' | .53 | | 73.1 | | | | 9 | 134 | 308 | 1301A | .1386 | | | 1.01 | . 2 | ' | .51 | | 72.0 | ' ' | | | 10 | 228 | | -1.5991A | .1581 | ' | | .56 | -2.8 | | .56 | | 79.1 | | 691151 | | 11 | 215 | | -1.4313A | .1537 | | | .54 | -3.3 | ' | ' | 84.7 | 77.6 | | | | 12 | 152 | 308 | 1700 | .1386 | | -1.3 | | -1.4 | ' | .51 | | 72.1 | | 691155 | | 13 | 146 | 308 | 1706A | .1386 | ' | | 1.35 | 3.0 | ' | ' | 69.0 | 72.1 | | | | 14 | 222 | | -1.6723A | .1602 | ' | -2.6 | | -2.7 | ' | ' | 82.6 | 79.8 | | 691159 | | 15 | 271 | | -3.2102A | .2432 | | -1.5 | | .6 | ' | | 95.4 | 92.9 | | | | 16 | 232 | | -2.0118A | .1719 | | | .62 | -1.9 | ' | .57 | | 83.3 | | | | 17 | 157 | 308 | 6633A | .1411 | | | .95 | 4 | | .53 | | 73.3 | | | | 18 | 212 | | -1.5472A | .1566 | ' | | 1.06 | . 4 | | .56 | | 78.6 | ' ' | 707419 | | 19 | 174 | 308 | 2163A | .1387 | ' | | 1.37 | 3.2 | | .51 | | 72.2 | | | | 20 | 169 | 308 | 1781A | .1386 | | | 1.50 | 4.1 | ' | .51 | | 72.1 | | 707421 | | 21 | 252 | | -2.1936A | .1795 | | | | -2.9 | ' | .57 | | 85.1 | | 707422 | | 22 | 148 | 308 | 3290A | .1390 | • | | 1.12 | 1.1 | ' | .52 | | 72.4 | | 707426 | | 23 | 224 | | -2.0397A | .1730 | ' | | 1.01 | .1 | | .57 | | 83.6 | | 707428 | | 24 | 242 | | -2.1464A | .1774 | ' | -1.9 | | -1.9 | | .57 | | 84.7 | ' ' | 707429 | | 25 | 226 | | -1.5051A | .1555 | ' | | .81 | -1.1 | | .56 | | 78.2 | | 707430 | | 26 | 112 | | -1.1171 | .2016 | | | .73 | -1.3 | ' | .56 | | 76.2 | | 748726 | | 27 | 98 | | -1.6500 | .2329 | | | .60 | -1.8 | ' | .55 | | 78.7 | | 748727 | | 28 | 97 | | -1.5962 | .2307 | ' | -1.7 | | -1.9 | ' | .55 | | 78.1 | | 748728 | | 29 | 100 | 170 | | .1929 | ' | | .98 | .0 | | .55 | | 74.0 | | 748729 | | 30 | 133 | | -2.1167 | .2419 | ' | -1.1 | | -1.3 | ' | ' | 85.7 | 85.0 | | 748732 | | 31
 32 | 79
51 | 138
138 | 7469
.4287 | .2080 | ' | -1.0 | .92
 1.21 | 5
1.3 | | .52
.44 | | 72.8 | | 748733
748734 | | 32
 33 | 51
77 | 138 | .4287 | .1896 | | | 1.21 | 1.3
4 | | .51 | | 72.5 | | 748734 | | 33 | 108 | 170 | 9575 | .1980 | | | .69 | -1.7 | ' | | 79.9 | 75.3 | | | | 3 4
 35 | 131 | | -2.0026 | .2356 | ' | | .86 | -1.7 | | .58 | | 83.8 | | 748738 | | 35
 36 | 71 | 138 | 4078 | .2045 | | | .00
 .95 | 3 | | .50 | | 71.8 | | | | 36
 37 | 91 | 170 | 3236 | .1898 | | | 89 | 6 | | .53 | | 72.9 | | 748740 | | 37 | 78 | 138 | 7038 | .2074 | ' | | .94 | 3 | ' | .52 | | 72.7 | ' ' | 748740 | | 30 | 92 | | -1.3410 | .2074 | ' | | 81 | 9 | | .54 | | 76.0 | | 748741 | | 39
 40 | 114 | | -1.1993 | .2038 | | | 1.00 | .1 | | | 73.4 | 76.7 | | 748742 | | 41 | 92 | | -1.3410 | .2215 | | | 80 | -1.0 | ' | | 73.4 | 76.0 | ' ' | 748744 | |
 MEAN |
157.2 |
247.9 | -1.0784 | .1770 | +
 .98 | 1 |
 .94 |
2 | +
 | + | 76.1 | 76.7 | ++
 0107 | | | P.SD | 58.6 | 75.8 | .7720 | .0343 | | | .33 | 2.2 | | i | 8.1 | 4.8 | | | ## **Grade 8 Science** | ENTRY
NUMBER | TOTAL
SCORE | TOTAL
COUNT | MEASURE | MODEL
S.E. | | FIT
ZSTD | OUT | | PTBISE
 CORR. | ' | EXACT
OBS% | |
 DISPLACE | SCIE | |-----------------|----------------|----------------|-------------------|---------------|------------|-------------|--------------|-------------|------------------|--------|---------------|--------------|---------------|----------------| | | | | 1 05603 |
1200 | + | | + | | + | + | | | ++ | | | 1
2 | 214
162 | | -1.0569A
4853A | .1389 | | -4.2 | .64
 1.25 | -3.6
2.6 | 1 | .47 | 82.9
65.8 | 74.0
71.5 | | 65123
65124 | | 3 | 195 | 313 | 4853A
-1.1161A | .1332 | 1 | | 1.25 | -2.2 | | .46 | 79.2 | 74.4 | | 67379 | | 4 | 202 | | -1.1101A | .1383 | | | 1 .79 | -2.2 | ' | .47 | | 73.8 | ' ' | 67647 | | 5 | 192 | 313 | 8909A | .1367 | | | 1.45 | 3.8 | ' | .47 | | 73.1 | ' ' | 67647 | | 6 | 258 | | -2.5405A | .1870 | • | | 1 .70 | -1.2 | ' | .45 | | 87.7 | | 67647 | | 7 | 209 | | -1.3540A | .1441 | | | 1.22 | 1.6 | 1 | .47 | | 75.9 | | 67647 | | 8 | 192 | 313 | 7543A | .1352 | | | 11.16 | 1.6 | | .47 | | 72.5 | | 67647 | | 9 | 138 | 313 | .0265A | .1327 | | | 1.02 | .3 | 1 | .45 | | 71.2 | | | | 10 | 208 | 313 | 9540A | .1374 | • | | .65 | -3.6 | ' | .47 | | 73.5 | ' ' | | | 11 | 183 | 313 | 6486A | .1343 | • | | 1.09 | 1.0 | ' | .47 | | 72.0 | | | | 12 | 178 | 313 | 4048A | .1329 | • | | .93 | 7 | | .46 | | 71.3 | | 70743 | | 13 | 238 | | -1.9649A | .1612 | 1 | | .74 | -1.4 | 1 | .46 | | 81.7 | | 70743 | | 14 | 184 | 313 | 4881A | .1333 | 1.40 | 6.3 | 1.58 | 5.5 | .17 | .46 | 58.4 | 71.5 | 1904 | 70743 | | 15 | 219 | 313 | -1.1811A | .1409 | 1.09 | 1.4 | 1.01 | . 2 | .38 | .47 | 69.8 | 74.8 | 1723 | 70743 | | 16 | 241 | 313 | -1.8437 | .1571 | .73 | -3.6 | .53 | -3.1 | .67 | .46 | 85.2 | 80.4 | .0003 | 70743 | | 17 | 214 | 313 | -1.4025A | .1452 | .85 | -2.3 | .71 | -2.3 | .62 | .47 | 80.5 | 76.3 | .1590 | 70743 | | 18 | 249 | 313 | -1.6933A | .1525 | .87 | -1.7 | .74 | -1.7 | .48 | .47 | 82.2 | 78.8 | 3718 | 70743 | | 19 | 170 | 313 | 3687A | .1328 | 1.52 | 8.0 | 1.70 | 6.6 | .10 | .46 | 53.4 | 71.2 | 0587 | 70744 | | 20 | 231 | 313 | -1.4488A | .1462 | .80 | -3.1 | .69 | -2.4 | .59 | .47 | 80.9 | 76.6 | 1644 | 70744 | | 21 | 229 | 313 | -1.5637 | .1490 | .91 | -1.3 | .96 | 2 | .53 | .47 | 79.5 | 77.6 | .0003 | 70744 | | 22 | 145 | 313 | .1406A | .1331 | 1.38 | 6.1 | 1.54 | 5.1 | .17 | .44 | 57.7 | 71.3 | 1268 | 70744 | | 23 | 191 | 313 | 7783A | .1354 | 1.28 | 4.4 | 1.34 | 3.1 | .27 | .47 | 59.7 | 72.6 | 0273 | 70744 | | 24 | 241 | 313 | -1.9935A | .1622 | .86 | -1.6 | .62 | -2.2 | .63 | .46 | 82.6 | 82.0 | .1543 | 70744 | | 25 | 178 | 313 | 7783A | .1354 | .93 | -1.2 | .94 | 6 | .54 | .47 | 75.5 | 72.6 | .2100 | 70880 | | 26 | 136 | 166 | -2.1316 | .2334 | .76 | -1.9 | .46 | -2.2 | .64 | .44 | 85.4 | 84.1 | .0010 | 74874 | | 27 | 95 | 147 | -1.1334 | .2029 | .78 | -2.6 | .67 | -2.3 | .64 | .48 | 81.6 | 74.6 | .0000 | 74874 | | 28 | 72 | 147 | 2511 | .1922 | 1.05 | .6 | 1.04 | . 4 | .42 | .45 | 68.1 | 71.0 | .0009 | 74874 | | 29 | 137 | 166 | -2.1868 | .2367 | .79 | -1.5 | .60 | -1.4 | .60 | .43 | 86.0 | 84.7 | .0011 | 74874 | | 30 | 35 | 147 | 1.2135 | .2160 | 1.18 | 1.6 | 1.37 | 1.6 | .22 | .34 | 76.6 | 77.9 | .0019 | 74875 | | 31 | 100 | 166 | 6591 | .1855 | | | .97 | 1 | .41 | .47 | 65.6 | 71.8 | .0010 | 74875 | | 32 | 119 | | -1.3541 | .1995 | | | .92 | 3 | | .46 | | 76.0 | | 74875 | | 33 | 91 | | 9717 | .1995 | | | .99 | .0 | ' | .48 | | 73.8 | ' ' | 74875 | | 34 | 119 | | -1.3541 | .1995 | • | | 1.21 | 1.1 | 1 | .46 | | 76.0 | | 74875 | | 35 | 103 | | 7630 | .1868 | | | .81 | -1.3 | | .46 | | 72.3 | | 74875 | | 36 | 119 | | -2.3154 | .2518 | 1 | | .72 | 9 | | .48 | | 84.8 | | 74875 | | 37 | 124 | | -1.5596 | .2063 | | | .66 | -1.7 | ' | .45 | | 77.8 | ' ' | 74875 | | 38 | 119 | | -2.3154 | .2518 | | | .47 | -2.0 | ' | .48 | | 84.8 | | 74875 | | 39 | 106 | | -1.6148 | .2170 | 1 | | .58 | -2.2 | ' | .48 | | 77.7 | ' ' | | | 40 | 92 | | 3875 | .1833 | | | 1.15 | 1.1 | 1 | .46 | | 71.2 | | 74876 | | 41 | 122 | 147 | -2.5159 | .2657 | .76 | -1.5 | .44 | -1.9 | .66 | .48 | 87.2 | 86.9 | 0005 | 74876 | | MEAN | 161 6 | 251 0 | -1.1430 | 1700 | +
 .99 | 1 | +
 02 | | +
I | +
I | 7/ 0 | 76 0 | ++
 .0018 | | | | 164.6 | | | .1708 | | | .92 | 2 | 1 | ļ | 74.8 | 76.2 | | | | P.SD | 55.3 | 76.6 | .7785 | .0394 | .20 | 2.8 | .32 | 2.4 | | | 9.0 | 4.8 | .1307 | | ## **Grade 11 Science** | ENTRY
NUMBER | TOTAL
SCORE | TOTAL | MEASURE | MODEL
S.E. | | FIT
ZSTD | OUT | | PTBISE | | EXACT
OBS% | |
 DISPLACE | SCIE | |-----------------|----------------|-------|----------|---------------|------|-------------|------|------|--------|-------|---------------|------|---------------|-------| | | | | | |
 | |
 | | + | + | | | h | | | 1 | 171 | 292 | 3918A | .1462 | .90 | -1.5 | | 9 | .60 | .55 | 78.7 | 74.0 | 1499 | 65177 | | 2 | 194 | 292 | -1.1989A | .1594 | 1.19 | 2.3 | 1.50 | 2.6 | .50 | .58 | 73.8 | 78.6 | .1301 | 65178 | | 3 | 186 | 292 | 5491A | .1479 | .82 | -2.9 | .71 | -2.5 | .65 | .56 | 82.0 | 74.7 | 3331 | 6517 | | 4 | 183 | 292 | -1.1730A | .1588 | 1.15 | 1.9 | 1.06 | . 4 | .56 | .58 | 73.0 | 78.5 | .3664 | 6517 | | 5 | 132 | 292 | .3723A | .1435 | 1.06 | 1.0 | 1.13 | 1.1 | .47 | .50 | 71.2 | 72.5 | 0956 | 6518 | | 6 | 184 | 292 | 4655A | .1469 | .86 | -2.2 | 1.07 | .6 | 1 | .55 | 78.3 | 74.3 | 3698 | 6518 | | 7 | 189 | 292 | 7074A | .1500 | .88 | -1.7 | .75 | -2.0 | .62 | .57 | 77.9 | 75.5 | 2456 | 6738 | | 8 | 147 | 292 | .0747A | .1435 | | | 1.49 | 3.8 | | .52 | 59.6 | 72.7 | | 6738 | | 9 | 197 | | -1.1384A | .1580 | | -2.7 | | -1.9 | 1 | .58 | 85.0 | 78.2 | | 6764 | | 10 | 212 | | -1.6616A | .1726 | 1 | -1.9 | | -1.3 | | .60 | 85.0 | 82.2 | | 6764 | | 11 | 174 | 292 | 5305A | .1477 | | . 4 | | . 2 | | .56 | 75.3 | 74.6 | | 6911 | | 12 | 183 | 292 | 8985A | .1531 | | | .94 | 4 | 1 | .57 | 70.4 | 76.7 | | 6911 | | 13 | 170 | 292 | 2834A | .1453 | 1 | | 1.08 | .7 | .56 | .55 | 75.3 | 73.6 | | 6911 | | 14 | 215 | | -1.3651A | .1636 | | -1.2 | | -1.7 | 1 | .59 | 79.8 | 79.8 | | 6911 | | 15 | 228 | | -2.1093A | .1905 | | -1.3 | | -1.8 | | .60 | 86.1 | 86.0 | | | | 16 | 153 | 292 | | .1439 | | | 1.15 | 1.3 | 1 | .53 | 67.8 | 73.0 | | | | 17 | 246 | | -3.1977A | .2619 | 1 | .5 | | 5 | 1 | .62 | 92.1 | 93.5 | | 6911 | | 18 | 241 | | -2.2556A | .1976 | 1 | -2.7 | | -2.2 | 1 | .61 | 89.5 | 87.2 | 3255 | 7074 | | 19 | 240 | | -2.7600A | .2276 | | | .56 | -1.2 | | .61 | 89.9 | 90.9 | | 7074 | | 20 | 197 | | -1.3069A | .1620 | | | 1.16 | .9 | | .59 | 79.0 | 79.4 | | 7074 | | 21 | 192 | | -1.3573A | .1634 | | | 2.06 | 4.5 | 1 | .59 | 68.2 | 79.8 | .3395 | 7074 | | 22 | 124 | 292 | .2543A | .1433 | | | 1.25 | 2.1 | | .51 | 62.2 | 72.5 | .1830 | 7074 | | 23 | 127 | 292 | 0734A | .1440 | | | 1.51 | 3.9 | 1 | .53 | 68.5 | 73.0 | | 7074 | | 24 | 180 | 292 | 7865A | .1512 | | -1.5 | | . 7 | | .57 | 80.1 | 76.0 | | | | 25 | 206 | | -1.2754A | .1612 | | | .58 | -2.7 | 1 | .59 | 84.6 | 79.2 | | 7074 | | 26 | 160 | 292 | 0883A | .1441 | 1 | | 1.00 | .0 | 1 | .53 | 69.7 | 73.1 | | 7074 | | 27 | 163 | 292 | 3703 | .1460 | | | 1.30 | 2.4 | 1 | .55 | 65.2 | 73.9 | | 7074 | | 28 | 155 | 292 | 4210A | .1465 | 1 | | 1.10 | . 9 | | .55 | 66.7 | 74.1 | | 7074 | | 29 | 210 | | -1.4600A | .1663 | 1 | -1.4 | | -1.4 | | .59 | 82.8 | 80.5 | | 7074 | | 30 | 236 | | -2.6040A | .2173 | 1 | .1 | | 1 | | .61 | 89.1 | 89.9 | | 7074 | | 31 | 100 | | -1.3255 | .2322 | 1 | | .61 | -1.7 | | .61 | 81.7 | 79.6 | .0018 | | | 32 | 104 | | -1.5488 | .2409 | | -1.4 | | -1.5 | | .62 | 87.0 | 81.2 | | 7487 | | 33 | 96 | 146 | 9362 | .2150 | | | .86 | 6 | | .55 | 77.2 | 76.3 | | 7487 | | 34 | 105 | | -1.3784 | .2297 | 1 | -1.6 | | -1.3 | 1 | .56 | 85.3 | 79.9 | | 7487 | | 35 | 108 | | -1.7912 | .2521 | | | .97 | . 0 | 1 | .62 | 83.2 | 83.0 | | 7487 | | 36 | 73 | 146 | .0393 | .2010 | 1 | | .92 | 5 | | .51 | 70.6 | 73.0 | | 7487 | | 37 | 99 | | -1.2721 | .2303 | | | .72 | | | .61 | 85.5 | 79.3 | | 7487 | | 38 | 62 | 146 | .3915 | .2050 | | | 1.43 | 2.1 | | .51 | 65.6 | 72.0 | | 7487 | | 39 | 67 | 146 | .2813 | .2008 | | | 1.13 | .9 | | .50 | 67.6 | 73.0 | .0004 | 7487 | | 40 | 98 | | -1.0297 | .2176 | | | .95 | 2 | 1 | .55 | 73.5 | 77.1 | | 7487 | | 41 | 48 | 146 | .9941 | .2116 | 1 | | 1.05 | .3 | | .46 | 79.4 | 74.5 | | 7487 | | 42 | 73 | 146 | 0707 | .2058 | 1 | | 1.39 | 2.1 | | .55 | 61.1 | 73.1 | | | | 43 | 105 | | -1.3784 | .2297 | | | .62 | -1.5 | 1 | .56 | 82.4 | 79.9 | | 7487 | | 44 | 107 | | -1.4860 | .2342 | | | .78 | 7 | | .56 | | 80.8 | | | | 45 | 111 | | -1.9894 | .2627 | | | .99 | .1 | .65 | .63 | | 84.6 | | | | 46 | 115 | 146 | -1.9696 | | .93 | | .65 | | .62 | .57 | 85.3 | 85.2 | .0005 | 7487 | | MEAN | 153.6 | 241 2 | 9618 | .1855 | | .1 | | .0 | |
I | 77 4 | 78.3 | .0086 | | | P.SD | 53.5 | 69.5 | .8986 | .0394 | 1 | | .32 | 1.7 | ! | | //.4 | 5.3 | | | ## **Appendix N: Reading Pre- and Post-Equating Summary** The Pre- values were taken from the calibrated item bank. The Post- values were taken directly from unanchored calibration runs. The correlation and SD ratio are from the first linking using all the items, items with large Z were removed from subsequent linking sets until the Robust criteria was met, or other stopping criteria reached. | | | 3 | | | 4 | | | 5 | , | | 6 | 1 0 | | 7 | | | 8 | | | 11 | | |------|-------| | Item | Pre | Post | Z | 1 | 1.14 | 1.25 | -1.16 | -0.45 | -0.11 | -0.85 | 0.37 | 0.30 | -0.85 | 0.10 | -0.19 | -0.04 | -0.52 | -0.94 | 0.47 | 0.61 | -0.20 | 0.07 | -0.58 | -0.92 | 0.20 | | 2 | -0.39 | -1.09 | 1.57 | -0.12 | 0.01 | -0.38 | -0.19 | -0.15 | -1.29 | 1.29 | 1.06 | -0.24 | 0.97 | 0.70 | -0.25 | 0.47 | -0.79 | 1.27 | 1.17 | 1.11 | -1.06 | | 3 | 1.07 | 0.77 | 0.21 | -0.39 | 0.21 | -1.46 | -0.28 | -0.49 | -0.29 | 0.80 | 0.93 | -1.25 | 0.20 | -0.26 | 0.61 | 1.24 | 0.63 | -0.45 | 0.73 | 0.44 | 0.00 | | 4 | -0.47 | -1.13 | 1.41 | -0.41 | -0.72 | 0.66 | 0.92 | 0.54 | 0.38 | 0.16 | -0.19 | 0.11 | 0.41 | 0.26 | -0.84 | 0.46 | -0.13 | -0.52 | 0.19 | 0.05 | -0.70 | | 5 | 0.85 | 0.33 | 0.95 | -1.12 | -0.50 | -1.52 | -1.11 | -1.11 | -1.12 | -0.39 | -0.39 | -0.90 | -0.06 | -0.40 | 0.02 | 0.22 | -1.00 | 1.16 | 0.33 | 0.52 | -2.22 | | 6 | 0.13 | -0.28 | 0.57 |
0.52 | 0.37 | 0.26 | 0.16 | 0.59 | -2.82 | 0.76 | 0.52 | -0.20 | -0.23 | -0.11 | -2.12 | -1.27 | -1.41 | -1.72 | -0.30 | -0.83 | 1.09 | | 7 | 0.48 | 0.86 | -2.07 | -0.34 | -0.38 | 0.03 | -0.86 | -0.58 | -2.23 | -0.56 | -0.85 | -0.04 | 0.70 | 0.29 | 0.36 | 0.74 | 0.39 | -1.17 | -0.39 | -0.31 | -1.69 | | 8 | 0.41 | 0.07 | 0.35 | 1.00 | 0.89 | 0.17 | 0.12 | 0.30 | -1.82 | 0.72 | 0.27 | 0.41 | 0.36 | -0.38 | 1.93 | 0.08 | -0.60 | -0.29 | 0.29 | 0.14 | -0.62 | | 9 | -0.17 | -0.02 | -1.26 | -0.09 | -0.04 | -0.20 | -0.70 | -1.03 | 0.14 | -0.76 | -1.50 | 1.23 | 0.40 | 0.45 | -1.76 | 2.20 | 0.86 | 1.47 | 0.17 | -0.14 | 0.09 | | 10 | -1.43 | -1.06 | -2.04 | -0.67 | -0.53 | -0.39 | -0.48 | -0.82 | 0.19 | 0.42 | -0.18 | 0.81 | -0.73 | -1.05 | -0.07 | -0.02 | -0.68 | -0.33 | -0.42 | -0.53 | -0.82 | | 11 | 0.61 | 0.26 | 0.36 | 0.59 | 0.28 | 0.64 | 0.34 | 0.24 | -0.76 | 1.75 | 1.30 | 0.39 | -0.47 | -0.65 | -0.71 | -0.78 | -1.47 | -0.24 | -0.97 | -1.11 | -0.69 | | 12 | 0.27 | 0.07 | -0.14 | -0.61 | -1.00 | 0.84 | 0.60 | 0.30 | 0.08 | -0.82 | -0.70 | -1.23 | -1.29 | -1.89 | 1.31 | -0.18 | -1.08 | 0.31 | 0.29 | 0.01 | -0.04 | | 13 | -0.32 | -0.55 | 0.00 | 0.09 | 0.48 | -0.99 | 1.63 | 1.02 | 1.28 | 0.06 | -0.53 | 0.78 | 1.94 | 1.50 | 0.54 | 1.07 | 0.38 | -0.24 | -0.00 | -0.50 | 0.94 | | 14 | 1.03 | 0.86 | -0.22 | 1.07 | 1.11 | -0.16 | 1.50 | 1.50 | -1.16 | -0.16 | -0.74 | 0.77 | 1.69 | 1.30 | 0.29 | 2.34 | 0.98 | 1.54 | -0.70 | -1.05 | 0.23 | | 15 | 0.53 | 0.36 | -0.21 | 0.47 | 0.04 | 0.92 | -0.13 | -0.49 | 0.29 | 0.22 | -0.03 | -0.17 | 0.64 | 0.31 | -0.00 | 1.06 | 0.28 | 0.00 | 0.61 | 0.30 | 0.08 | | 16 | 1.08 | 0.40 | 1.46 | -0.55 | -0.69 | 0.23 | 0.65 | 0.63 | -1.04 | 0.34 | 0.49 | -1.30 | -0.23 | -0.34 | -1.03 | 1.62 | 0.21 | 1.67 | 0.10 | 0.03 | -0.99 | | 17 | 0.95 | 0.77 | -0.17 | 1.31 | 1.13 | 0.34 | 0.52 | 0.22 | 0.02 | 1.74 | 1.35 | 0.22 | 0.93 | 0.43 | 0.79 | 2.03 | 1.44 | -0.53 | 1.20 | 1.06 | -0.65 | | 18 | -1.15 | -1.02 | -1.20 | -0.34 | 0.09 | -1.06 | 0.17 | -0.13 | 0.03 | -0.36 | -0.68 | 0.00 | 0.21 | 0.17 | -1.38 | 0.81 | -0.08 | 0.27 | 1.17 | 1.17 | -1.34 | | 19 | -0.15 | -0.49 | 0.36 | 0.23 | 0.37 | -0.40 | -0.36 | -0.82 | 0.67 | 0.92 | 0.25 | 1.03 | 1.72 | 0.85 | 2.57 | 1.86 | 0.56 | 1.36 | 0.21 | 0.24 | -1.45 | | 20 | -0.42 | -0.88 | 0.76 | 0.90 | 0.48 | 0.89 | 0.58 | 0.52 | -0.89 | -1.65 | -1.64 | -0.93 | -0.57 | -0.62 | -1.30 | 0.68 | 0.12 | -0.59 | -0.69 | -1.01 | 0.14 | | 21 | -0.05 | -0.02 | -0.86 | 1.31 | 1.28 | 0.00 | 1.06 | 0.78 | -0.01 | 0.56 | 0.64 | -1.13 | 1.32 | 0.83 | 0.75 | 0.79 | -0.28 | 0.75 | 0.05 | -0.26 | 0.07 | | 22 | -0.45 | -0.64 | -0.14 | -0.02 | 0.48 | -1.24 | 1.56 | 1.22 | 0.23 | 0.22 | 0.08 | -0.48 | -0.15 | -0.48 | 0.00 | 0.16 | -0.53 | -0.24 | 0.95 | 0.30 | 1.62 | | 23 | 0.52 | 0.15 | 0.46 | -1.45 | -1.04 | -1.04 | -1.14 | -1.61 | 0.70 | 1.18 | 0.78 | 0.25 | -0.57 | -0.94 | 0.21 | 0.82 | -0.20 | 0.64 | 1.41 | 0.98 | 0.64 | | | | 3 | | | 4 | | | 5 | | | 6 | | | 7 | | | 8 | | | 11 | | |-------|------|-------|-------|-------|-------|------|-------|-------|------|------|-------|------|------|-------|-------|------|-------|-------|-------|-------|------| | Item | Pre | Post | Z | 24 | 0.99 | 0.36 | 1.34 | -2.14 | -2.33 | 0.36 | 0.49 | -0.09 | 1.17 | 1.21 | 0.30 | 1.71 | 0.57 | 0.31 | -0.33 | 2.45 | 1.60 | 0.16 | 1.43 | 0.89 | 1.13 | | 25 | 0.74 | 0.66 | -0.50 | 0.35 | 0.11 | 0.48 | -0.56 | -0.84 | 0.00 | 0.13 | -0.37 | 0.54 | 0.98 | 0.66 | -0.05 | 1.71 | 1.01 | -0.24 | -0.13 | -0.61 | 0.86 | | Mean | 0.23 | 0.00 | | -0.04 | -0.00 | | 0.19 | -0.00 | | 0.31 | 0.00 | | 0.33 | -0.00 | | 0.85 | 0.00 | | 0.25 | 0.00 | | | Corr | | 0.907 | | | 0.924 | | | 0.947 | | | 0.936 | | | 0.961 | | | 0.939 | | | 0.955 | | | SD | 0.71 | 0.70 | | 0.85 | 0.80 | | 0.79 | 0.79 | | 0.82 | 0.79 | | 0.83 | 0.79 | | 0.94 | 0.84 | | 0.70 | 0.71 | | | Ratio | | 0.98 | | | 0.94 | | | 0.99 | | | 0.97 | | | 0.95 | | | 0.86 | | | 1.02 | | ## **Appendix O: Mathematics Pre- and Post-Equating Summary** The Pre- values were taken from the calibrated item bank. The Post- values were taken directly from unanchored calibration runs. The correlation and SD ratio are from the first linking using all the items, items with large Z were removed from subsequent linking sets until the Robust criteria was met, or other stopping criteria reached. | | | 3 | | | 4 | | | 5 | | | 6 | | | 7 | | | 8 | | | 11 | | |------|-------| | Item | Pre | Post | Z | 1 | -0.08 | -0.21 | 0.92 | 0.21 | -0.29 | 1.17 | -0.20 | -0.40 | 0.82 | -0.04 | -0.02 | -0.22 | -0.09 | -0.14 | -0.20 | -0.16 | -0.42 | 1.14 | -1.60 | -1.48 | 0.24 | | 2 | -0.84 | -0.76 | -0.02 | 0.28 | -0.27 | 1.29 | 1.03 | 1.31 | -0.57 | -0.96 | -0.38 | -2.56 | -0.94 | -0.79 | -0.73 | -0.51 | -0.75 | 1.09 | -1.14 | -0.99 | 0.13 | | 3 | 0.29 | 0.37 | 0.00 | -0.47 | -0.43 | -0.25 | -0.72 | -1.07 | 1.29 | -0.40 | -0.44 | 0.00 | -1.11 | -0.93 | -0.82 | -0.82 | -0.38 | -2.02 | 0.31 | 0.77 | -0.82 | | 4 | -0.03 | 0.37 | -1.40 | 0.39 | 0.26 | 0.18 | 0.11 | 0.41 | -0.64 | -0.89 | -1.07 | 0.54 | 0.77 | -0.01 | 1.67 | 0.10 | 0.07 | 0.12 | 0.15 | 0.47 | -0.36 | | 5 | 0.48 | 0.40 | 0.70 | 0.40 | -0.03 | 0.99 | -0.42 | -0.44 | 0.30 | 0.89 | 1.04 | -0.79 | -0.72 | -0.88 | 0.08 | -0.53 | -0.08 | -2.09 | -1.58 | -0.81 | -1.77 | | 6 | -1.49 | -1.46 | 0.23 | -0.55 | -0.46 | -0.41 | -1.46 | -1.29 | -0.25 | -0.39 | -0.24 | -0.80 | 0.09 | -0.32 | 0.72 | 1.39 | 1.11 | 1.26 | 0.04 | -0.08 | 0.98 | | 7 | 0.67 | 0.89 | -0.60 | 1.04 | 0.64 | 0.90 | 0.19 | 0.61 | -1.00 | -0.89 | -0.85 | -0.33 | -0.53 | -0.32 | -0.87 | -1.26 | -1.09 | -0.79 | -1.14 | -0.87 | -0.24 | | 8 | -1.83 | -1.32 | -1.86 | 0.08 | -0.03 | 0.13 | -0.90 | -1.01 | 0.58 | -0.99 | -0.97 | -0.25 | -0.89 | -1.02 | -0.01 | 0.74 | 1.31 | -2.62 | -0.53 | -0.33 | -0.03 | | 9 | 0.03 | -0.27 | 1.63 | -0.46 | -0.35 | -0.47 | 0.93 | 1.13 | -0.36 | 0.62 | 0.51 | 0.28 | -0.35 | -0.73 | 0.62 | -0.53 | -0.48 | -0.25 | 0.62 | 0.64 | 0.55 | | 10 | -0.57 | -0.42 | -0.29 | 1.10 | 1.19 | -0.40 | -0.90 | -0.44 | -1.11 | 0.39 | 0.18 | 0.70 | -0.10 | -0.14 | -0.23 | 0.91 | 0.88 | 0.12 | -0.69 | -1.08 | 1.83 | | 11 | 0.83 | 0.81 | 0.41 | -0.51 | -0.76 | 0.51 | -1.11 | -0.67 | -1.04 | 0.05 | -0.31 | 1.29 | 0.99 | 0.53 | 0.83 | 0.16 | 0.26 | -0.46 | -0.34 | -0.21 | 0.21 | | 12 | -0.33 | -0.33 | 0.35 | 0.13 | 0.19 | -0.31 | 1.60 | 1.42 | 0.77 | 0.95 | 1.02 | -0.49 | -0.30 | 0.00 | -1.12 | -0.59 | -0.62 | 0.13 | -0.38 | -0.19 | 0.03 | | 13 | 1.80 | 1.85 | 0.15 | -0.34 | -0.03 | -0.97 | -0.19 | -0.06 | -0.15 | -0.46 | -0.38 | -0.48 | -1.10 | -1.00 | -0.60 | -0.22 | -0.40 | 0.78 | -0.20 | -0.33 | 1.01 | | 14 | -1.41 | -1.68 | 1.52 | -0.85 | -0.19 | -1.90 | 0.35 | 0.25 | 0.53 | 0.07 | 0.03 | -0.00 | -0.62 | -0.58 | -0.43 | -1.23 | -1.20 | -0.17 | 0.33 | 0.51 | 0.06 | | 15 | 0.27 | 0.63 | -1.26 | -0.26 | -0.49 | 0.44 | -0.90 | -0.33 | -1.44 | -1.12 | -1.25 | 0.34 | 0.92 | 1.09 | -0.79 | -0.83 | -0.75 | -0.38 | 0.33 | 0.27 | 0.79 | | 16 | -2.22 | -1.68 | -2.03 | 0.68 | 0.52 | 0.27 | -0.38 | -0.58 | 0.84 | -1.22 | -1.07 | -0.83 | 0.37 | -0.16 | 1.01 | 1.12 | 1.37 | -1.14 | -0.83 | 0.03 | -2.05 | | 17 | 1.55 | 1.17 | 1.96 | 0.56 | 0.68 | -0.49 | 0.40 | 0.78 | -0.87 | -0.00 | 0.06 | -0.44 | -1.53 | -1.42 | -0.61 | -0.30 | -0.67 | 1.63 | -1.82 | -1.02 | -1.87 | | 18 | -0.55 | -0.45 | -0.08 | -0.16 | -0.49 | 0.71 | -1.03 | -1.39 | 1.31 | -0.44 | -0.60 | 0.48 | 0.88 | 0.74 | 0.01 | 0.88 | 0.78 | 0.43 | -0.19 | 0.33 | -1.02 | | 19 | 0.71 | 1.30 | -2.24 | 0.03 | -0.70 | 1.78 | -0.06 | -0.10 | 0.36 | 1.14 | 0.67 | 1.77 | 0.60 | 0.71 | -0.62 | 0.67 | 0.49 | 0.76 | -1.40 | -1.18 | -0.05 | | 20 | 0.40 | 0.53 | -0.21 | 1.01 | 1.21 | -0.69 | -0.48 | -0.24 | -0.43 | 0.74 | 0.52 | 0.70 | 0.96 | 0.55 | 0.73 | -0.27 | -0.24 | -0.12 | -1.68 | -0.40 | -3.37 | | 21 | -0.01 | -0.01 | 0.35 | -2.05 | -1.74 | -0.99 | 0.14 | -0.02 | 0.70 | -0.81 | -0.90 | 0.20 | 0.71 | 0.16 | 1.07 | -0.23 | -0.38 | 0.67 | -0.20 | 0.35 | -1.11 | | 22 | -0.44 | -0.27 | -0.39 | -0.60 | -1.03 | 0.98 | -0.78 | -0.63 | -0.22 | 1.00 | 0.47 | 2.00 | 0.95 | 0.83 | -0.01 | -0.60 | -0.60 | 0.00 | 0.77 | 1.12 | -0.49 | | | | 3 | | | 4 | | | 5 | | | 6 | | | 7 | | | 8 | | | 11 | | |-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | Item | Pre | Post | Z | 23 | -0.44 | -0.79 | 1.88 | -0.66 | -0.35 | -0.99 | 0.99 | 1.23 | -0.47 | 0.68 | 0.93 | -1.21 | 0.64 | 0.36 | 0.36 | 0.79 | 0.83 | -0.16 | -0.03 | 0.11 | 0.18 | | 24 | 0.45 | 0.19 | 1.47 | 1.32 | 1.62 | -0.94 | 1.11 | 1.27 | -0.20 | 0.47 | 0.23 | 0.80 | 1.13 | 0.56 | 1.11 | 0.99 | 0.44 | 2.44 | 0.50 | 1.22 | -1.63 | | 25 | 0.94 | 1.12 | -0.46 | 0.85 | 0.43 | 0.95 | 0.51 | 0.16 | 1.27 | 0.75 | 0.96 | -1.03 | 1.17 | 1.19 | -0.40 | 0.64 | 1.11 | -2.17 | -0.47 | -0.23 | -0.10 | | 26 | | | | -0.06 | -0.43 | 0.83 | 0.76 | 0.63 | 0.63 | 0.56 | -0.09 | 2.54 | -0.18 | -0.34 | 0.07 | -0.84 | -0.87 | 0.10 | -0.10 | 0.05 | 0.16 | | 27 | | | | 0.21 | 0.17 | -0.03 | 0.86 | 0.58 | 1.07 | 0.50 | 0.18 | 1.15 | 0.50 | 0.33 | 0.10 | 0.12 | 0.12 | -0.03 | 0.60 | 1.18 | -1.19 | | 28 | | | | 1.05 | 1.03 | -0.09 | -1.08 | -0.37 | -1.83 | 0.80 | 0.80 | -0.15 | 1.14 | 0.63 | 0.97 | 0.38 | 0.38 | -0.00 | 0.60 | 0.70 | 0.32 | | 29 | | | | -0.99 | -0.89 | -0.40 | -1.29 | -1.26 | 0.15 | 0.52 | 0.68 | -0.85 | -0.52 | -0.05 | -1.56 | 0.57 | 0.46 | 0.48 | 0.60 | 0.54 | 0.80 | | 30 | | | | 1.10 | 1.03 | 0.03 | 0.51 | 0.52 | 0.20 | 0.47 | 0.30 | 0.53 | 1.45 | 1.16 | 0.41 | -1.03 | -0.69 | -1.55 | 0.77 | 0.92 | 0.14 | | Mean | -0.07 | -0.00 | | 0.08 | -0.00 | | -0.08 | 0.00 | | 0.07 | 0.00 | | 0.14 | -0.00 | | -0.02 | 0.00 | | -0.29 | 0.00 | | | Corr | | 0.961 | | | 0.913 | | | 0.940 | | | 0.939 | | | 0.937 | | | 0.941 | | | 0.900 | | | SD | 0.98 | 0.95 | | 0.77 | 0.75 | | 0.83 | 0.83 | | 0.73 | 0.69 | | 0.84 | 0.72 | | 0.75 | 0.74 |
 0.80 | 0.75 | | | Ratio | | 0.97 | | | 0.98 | | | 0.99 | | | 0.94 | | | 0.86 | | | 0.99 | | | 0.94 | | ## **Appendix P: Science Pre- and Post-Equating Summary** The Pre- values were taken from the calibrated item bank. The Post- values were taken directly from unanchored calibration runs. The correlation and SD ratio are from the first linking using all the items, items with large Z were removed from subsequent linking sets until the Robust criteria was met, or other stopping criteria reached. | | | 5 | | | 8 | | | 11 | | |-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | Item | Pre | Post | Z | Pre | Post | Z | Pre | Post | Z | | 1 | -0.70 | 0.69 | -0.54 | -1.06 | -0.18 | 0.70 | -0.39 | 0.42 | 0.51 | | 2 | -0.21 | 0.93 | 0.15 | -0.49 | 0.75 | -0.63 | -1.20 | -0.09 | -0.43 | | 3 | -0.90 | 0.03 | 0.75 | -1.12 | 0.19 | -0.89 | -0.55 | 0.10 | 1.05 | | 4 | -0.87 | 0.03 | 0.81 | -1.02 | 0.04 | 0.00 | -1.17 | 0.16 | -1.15 | | 5 | -1.70 | -0.30 | -0.58 | -0.89 | 0.22 | -0.18 | 0.37 | 1.21 | 0.43 | | 6 | -1.03 | 0.45 | -0.79 | -2.54 | -1.19 | -1.06 | -0.47 | 0.14 | 1.18 | | 7 | -1.45 | -0.25 | 0.00 | -1.35 | -0.09 | -0.76 | -0.71 | 0.03 | 0.76 | | 8 | -0.61 | 0.21 | 1.04 | -0.75 | 0.24 | 0.26 | 0.07 | 0.91 | 0.43 | | 9 | -0.13 | 1.28 | -0.61 | 0.03 | 1.13 | -0.15 | -1.14 | -0.16 | -0.01 | | 10 | -1.60 | -0.62 | 0.58 | -0.95 | -0.07 | 0.66 | -1.66 | -0.54 | -0.45 | | 11 | -1.43 | -0.30 | 0.16 | -0.65 | 0.39 | 0.07 | -0.53 | 0.36 | 0.27 | | 12 | -1.22 | 0.95 | -2.74 | -0.40 | 0.46 | 0.73 | -0.90 | 0.16 | -0.27 | | 13 | -0.17 | 1.06 | -0.10 | -1.96 | -0.68 | -0.83 | -0.28 | 0.44 | 0.79 | | 14 | -1.67 | -0.47 | -0.04 | -0.49 | 0.36 | 0.80 | -1.37 | -0.63 | 0.75 | | 15 | -3.21 | -2.33 | 0.87 | -1.18 | -0.28 | 0.59 | -2.11 | -1.03 | -0.34 | | 16 | -2.01 | -0.72 | -0.27 | -2.39 | -0.75 | -2.15 | -0.04 | 0.79 | 0.44 | | 17 | -0.66 | 0.86 | -0.92 | -1.40 | -0.18 | -0.59 | -3.20 | -1.77 | -1.46 | | 18 | -1.55 | -0.23 | -0.35 | -1.69 | -0.94 | 1.17 | -2.26 | -1.53 | 0.79 | | 19 | -0.22 | 0.54 | 1.22 | -0.37 | 0.61 | 0.30 | -2.76 | -1.48 | -0.96 | | 20 | -0.18 | 0.63 | 1.06 | -1.45 | -0.52 | 0.51 | -1.31 | -0.16 | -0.55 | | 21 | -2.19 | -1.36 | 0.99 | -1.99 | -0.48 | -1.67 | -1.36 | -0.04 | -1.09 | | 22 | -0.33 | 1.02 | -0.44 | 0.14 | 1.01 | 0.71 | 0.25 | 1.37 | -0.45 | | 23 | -2.04 | -0.51 | -0.93 | -0.78 | 0.24 | 0.17 | -0.07 | 1.31 | -1.31 | | 24 | -2.15 | -1.01 | 0.16 | -1.99 | -0.75 | -0.67 | -0.79 | 0.23 | -0.13 | | 25 | -1.51 | -0.56 | 0.70 | -0.78 | 0.46 | -0.66 | -1.28 | -0.38 | 0.26 | | 26 | | | | | | | -0.09 | 0.65 | 0.75 | | 27 | | | | | | | 0.15 | 0.59 | 1.73 | | 28 | | | | | | | -0.42 | 0.75 | -0.63 | | 29 | | | | | | | -1.46 | -0.49 | 0.01 | | 30 | | | | | | | -2.60 | -1.32 | -0.99 | | Mean | -1.19 | 0.00 | | -1.10 | -0.00 | | -0.97 | -0.00 | | | Corr | | 0.931 | | | 0.953 | | | 0.964 | | | SD | 0.80 | 0.87 | | 0.70 | 0.60 | | 0.93 | 0.83 | | | Ratio | | 1.08 | | | 0.86 | | | 0.90 | | # Appendix Q: Reading Raw-to-Scale Conversion Tables and Distributions of Ability The charts are simple displays of Scale Score, Raw Score, and percentile rank. The raw score and percentile rank for any Scale Score can be read directly from chart. The proformance levels *Meets Standards* begins at a Scale Score of 85 and *Exceeds Standards* begins at 135. *Below Standards* is a Scale Score of 84 and below. The table is a traditional table that was used to create the chart. This table would be used to retrieve the Scale Score or percentile rank for a given raw score. It also includes counts and percentages at each score. Grade 3 | Grade 5 | | Contont | Davis | | | Cours | Cours | | Carlo | | |----------|-------|-----------------|--------------|-------|---------|---------------|-----------------|------------|----------------|------| | Admin | Grade | Content
Area | Raw
Score | Count | Percent | Cum.
Count | Cum.
Percent | Percentile | Scale
Score | S.E. | | Spr 2016 | 3 | Read | 0 | 30 | 11.6 | 30 | 11.6 | 6 | 1 | 58 | | Spr 2016 | 3 | Read | 1 | 2 | 0.8 | 32 | 12.4 | 12 | 1 | 32 | | Spr 2016 | 3 | Read | 2 | 2 | 0.8 | 34 | 13.2 | 13 | 3 | 23 | | Spr 2016 | 3 | Read | 3 | 1 | 0.4 | 35 | 13.6 | 13 | 17 | 20 | | Spr 2016 | 3 | Read | 4 | 0 | 0.0 | 35 | 13.6 | 14 | 29 | 18 | | Spr 2016 | 3 | Read | 5 | 3 | 1.2 | 38 | 14.7 | 14 | 38 | 16 | | Spr 2016 | 3 | Read | 6 | 2 | 0.8 | 40 | 15.5 | 15 | 46 | 15 | | Spr 2016 | 3 | Read | 7 | 3 | 1.2 | 43 | 16.7 | 16 | 53 | 15 | | Spr 2016 | 3 | Read | 8 | 6 | 2.3 | 49 | 19.0 | 18 | 59 | 14 | | Spr 2016 | 3 | Read | 9 | 9 | 3.5 | 58 | 22.5 | 21 | 66 | 14 | | Spr 2016 | 3 | Read | 10 | 12 | 4.7 | 70 | 27.1 | 25 | 72 | 14 | | Spr 2016 | 3 | Read | 11 | 9 | 3.5 | 79 | 30.6 | 29 | 77 | 13 | | Spr 2016 | 3 | Read | 12 | 13 | 5.0 | 92 | 35.7 | 33 | 83 | 13 | | Spr 2016 | 3 | Read | 13 | 11 | 4.3 | 103 | 39.9 | 38 | 89 | 13 | | Spr 2016 | 3 | Read | 14 | 12 | 4.7 | 115 | 44.6 | 42 | 94 | 13 | | Spr 2016 | 3 | Read | 15 | 13 | 5.0 | 128 | 49.6 | 47 | 100 | 13 | | Spr 2016 | 3 | Read | 16 | 15 | 5.8 | 143 | 55.4 | 53 | 106 | 14 | | Spr 2016 | 3 | Read | 17 | 10 | 3.9 | 153 | 59.3 | 57 | 112 | 14 | | Spr 2016 | 3 | Read | 18 | 7 | 2.7 | 160 | 62.0 | 61 | 119 | 15 | | Spr 2016 | 3 | Read | 19 | 17 | 6.6 | 177 | 68.6 | 65 | 126 | 15 | | Spr 2016 | 3 | Read | 20 | 23 | 8.9 | 200 | 77.5 | 73 | 134 | 16 | | Spr 2016 | 3 | Read | 21 | 11 | 4.3 | 211 | 81.8 | 80 | 143 | 18 | | Spr 2016 | 3 | Read | 22 | 15 | 5.8 | 226 | 87.6 | 85 | 154 | 20 | | Spr 2016 | 3 | Read | 23 | 16 | 6.2 | 242 | 93.8 | 91 | 168 | 23 | | Spr 2016 | 3 | Read | 24 | 12 | 4.7 | 254 | 98.4 | 96 | 192 | 32 | | Spr 2016 | 3 | Read | 25 | 4 | 1.6 | 258 | 100.0 | 99 | 200 | 58 | ## Grade 4 | 0 dania | Cuada | Content | Raw
Score | Count | Dougout | Cum. | Cum. | Percentile | Scale | S.E. | |----------------------|------------|--------------|--------------|-------------|-------------|-------------|--------------|--------------|------------|------------| | Admin
Spr 2016 | Grade
4 | Area
Read | Score 0 | Count
20 | Percent 7.3 | Count
20 | Percent 7.3 | Percentile 4 | Score
1 | 5.E.
59 | | Spr 2016 | 4 | Read | 1 | 1 | 0.4 | 21 | 7.7 | 8 | 1 | 33 | | Spr 2016 | 4 | Read | 2 | 4 | 1.5 | 25 | 9.2 | 8 | 1 | 25 | | Spr 2016 | 4 | Read | 3 | 1 | 0.4 | 26 | 9.5 | 9 | 3 | 21 | | Spr 2016 | 4 | Read | 4 | 1 | 0.4 | 27 | 9.9 | 10 | 15 | 18 | | Spr 2016 | 4 | Read | 5 | 0 | 0.0 | 27 | 9.9 | 10 | 25 | 17 | | Spr 2016 | 4 | Read | 6 | 4 | 1.5 | 31 | 11.4 | 11 | 33 | 16 | | Spr 2016 | 4 | Read | 7 | 0 | 0.0 | 31 | 11.4 | 11 | 41 | 15 | | Spr 2016 | 4 | Read | 8 | 4 | 1.5 | 35 | 12.8 | 12 | 48 | 15 | | Spr 2016 | 4 | Read | 9 | 6 | 2.2 | 41 | 15.0 | 14 | 54 | 14 | | Spr 2016 | 4 | Read | 10 | 6 | 2.2 | 47 | 17.2 | 16 | 61 | 14 | | Spr 2016 | 4 | Read | 11 | 11 | 4.0 | 58 | 21.2 | 19 | 67 | 14 | | Spr 2016 | 4 | Read | 12 | 9 | 3.3 | 67 | 24.5 | 23 | 73 | 14 | | Spr 2016 | 4 | Read | 13 | 6 | 2.2 | 73 | 26.7 | 26 | 79 | 14 | | Spr 2016 | 4 | Read | 14 | 18 | 6.6 | 91 | 33.3 | 30 | 84 | 14 | | Spr 2016 | 4 | Read | 15 | 11 | 4.0 | 102 | 37.4 | 35 | 91 | 14 | | Spr 2016 | 4 | Read | 16 | 14 | 5.1 | 116 | 42.5 | 40 | 97 | 14 | | Spr 2016 | 4 | Read | 17 | 13 | 4.8 | 129 | 47.3 | 45 | 103 | 15 | | Spr 2016 | 4 | Read | 18 | 16 | 5.9 | 145 | 53.1 | 50 | 110 | 15 | | Spr 2016 | 4 | Read | 19 | 15 | 5.5 | 160 | 58.6 | 56 | 118 | 16 | | Spr 2016 | 4 | Read | 20 | 15 | 5.5 | 175 | 64.1 | 61 | 126 | 17 | | | 4 | Read | 20 | 23 | 8.4 | 198 | 72.5 | 68 | 135 | | | Spr 2016
Spr 2016 | 4 | | 21 | 23 | 8.4 | 221 | 72.5
81.0 | 77 | 147 | 18
20 | | | | Read | | | | | | | | | | Spr 2016 | 4 | Read | 23 | 23 | 8.4 | 244 | 89.4 | 85 | 162 | 24 | | Spr 2016 | 4 | Read | 24 | 19 | 7.0 | 263 | 96.3 | 93 | 186 | 33 | | Spr 2016 | 4 | Read | 25 | 10 | 3.7 | 273 | 100.0 | 98 | 200 | 59 | Grade 5 | Grade 3 | | 0 | | | | • | | | Contra | | |----------|-------|---------|-------|-------|---------|-------|---------|------------|--------|------| | | | Content | Raw | | | Cum. | Cum. | | Scale | o = | | Admin | Grade | Area | Score | Count | Percent | Count | Percent | Percentile | Score | S.E. | | Spr 2016 | 5 | Read | 0 | 20 | 6.4 | 20 | 6.4 | 3 | 1 | 72 | | Spr 2016 | 5 | Read | 1 | 1 | 0.3 | 21 | 6.7 | 7 | 1 | 40 | | Spr 2016 | 5 | Read | 2 | 1 | 0.3 | 22 | 7.1 | 7 | 1 | 29 | | Spr 2016 | 5 | Read | 3 | 1 | 0.3 | 23 | 7.4 | 7 | 1 | 25 | | Spr 2016 | 5 | Read | 4 | 0 | 0.0 | 23 | 7.4 | 7 | 10 | 22 | | Spr 2016 | 5 | Read | 5 | 2 | 0.6 | 25 | 8.0 | 8 | 22 | 20 | | Spr 2016 | 5 | Read | 6 | 4 | 1.3 | 29 | 9.3 | 9 | 32 | 19 | | Spr 2016 | 5 | Read | 7 | 3 | 1.0 | 32 | 10.3 | 10 | 41 | 18 | | Spr 2016 | 5 | Read | 8 | 4 | 1.3 | 36 | 11.5 | 11 | 49 | 18 | | Spr 2016 | 5 | Read | 9 | 11 | 3.5 | 47 | 15.1 | 13 | 57 | 17 | | Spr 2016 | 5 | Read | 10 | 14 | 4.5 | 61 | 19.6 | 17 | 65 | 17 | | Spr 2016 | 5 | Read | 11 | 13 | 4.2 | 74 | 23.7 | 22 | 72 | 17 | | Spr 2016 | 5 | Read | 12 | 19 | 6.1 | 93 | 29.8 | 27 | 79 | 17 | | Spr 2016 | 5 | Read | 13 | 9 | 2.9 | 102 | 32.7 | 31 | 87 | 17 | | Spr 2016 | 5 | Read | 14 | 17 | 5.4 | 119 | 38.1 | 35 | 94 | 17 | | Spr 2016 | 5 | Read | 15 | 24 | 7.7 | 143 | 45.8 | 42 | 101 | 17 | | Spr 2016 | 5 | Read | 16 | 19 | 6.1 | 162 | 51.9 | 49 | 109 | 17 | | Spr 2016 | 5 | Read | 17 | 27 | 8.7 | 189 | 60.6 | 56 | 117 | 18 | | Spr 2016 | 5 | Read | 18 | 10 | 3.2 | 199 | 63.8 | 62 | 125 | 18 | | Spr 2016 | 5 | Read | 19 | 13 | 4.2 | 212 | 67.9 | 66 | 134 | 19 | | Spr 2016 | 5 | Read | 20 | 24 | 7.7 | 236 | 75.6 | 72 | 144 | 20 | | Spr 2016 | 5 | Read | 21 | 21 | 6.7 | 257 | 82.4 | 79 | 156 | 22 | | Spr 2016 | 5 | Read | 22 | 15 | 4.8 | 272 | 87.2 | 85 | 170 | 25 | | Spr 2016 | 5 | Read | 23 | 25 | 8.0 | 297 | 95.2 | 91 | 188 | 29 | | Spr 2016 | 5 | Read | 24 | 11 | 3.5 | 308 | 98.7 | 97 | 200 | 40 | | Spr 2016 | 5 | Read | 25 | 4 | 1.3 | 312 | 100.0 | 99 | 200 | 72 | **Grade 6** | Grade o | | | | | | | | | | | |----------|-------|---------|-------|-------|---------|-------|---------
------------|-------|------| | | | Content | Raw | | | Cum. | Cum. | | Scale | 6.5 | | Admin | Grade | Area | Score | Count | Percent | Count | Percent | Percentile | Score | S.E. | | Spr 2016 | 6 | Read | 0 | 11 | 3.3 | 11 | 3.3 | 2 | 1 | 55 | | Spr 2016 | 6 | Read | 1 | 3 | 0.9 | 14 | 4.2 | 4 | 1 | 31 | | Spr 2016 | 6 | Read | 2 | 0 | 0.0 | 14 | 4.2 | 4 | 1 | 23 | | Spr 2016 | 6 | Read | 3 | 2 | 0.6 | 16 | 4.8 | 5 | 14 | 19 | | Spr 2016 | 6 | Read | 4 | 3 | 0.9 | 19 | 5.7 | 5 | 25 | 17 | | Spr 2016 | 6 | Read | 5 | 1 | 0.3 | 20 | 6.0 | 6 | 34 | 16 | | Spr 2016 | 6 | Read | 6 | 8 | 2.4 | 28 | 8.5 | 7 | 42 | 15 | | Spr 2016 | 6 | Read | 7 | 5 | 1.5 | 33 | 10.0 | 9 | 49 | 14 | | Spr 2016 | 6 | Read | 8 | 5 | 1.5 | 38 | 11.5 | 11 | 55 | 14 | | Spr 2016 | 6 | Read | 9 | 13 | 3.9 | 51 | 15.4 | 13 | 61 | 13 | | Spr 2016 | 6 | Read | 10 | 21 | 6.3 | 72 | 21.8 | 19 | 67 | 13 | | Spr 2016 | 6 | Read | 11 | 15 | 4.5 | 87 | 26.3 | 24 | 72 | 13 | | Spr 2016 | 6 | Read | 12 | 19 | 5.7 | 106 | 32.0 | 29 | 78 | 13 | | Spr 2016 | 6 | Read | 13 | 10 | 3.0 | 116 | 35.0 | 34 | 84 | 13 | | Spr 2016 | 6 | Read | 14 | 17 | 5.1 | 133 | 40.2 | 38 | 89 | 13 | | Spr 2016 | 6 | Read | 15 | 11 | 3.3 | 144 | 43.5 | 42 | 95 | 13 | | Spr 2016 | 6 | Read | 16 | 22 | 6.6 | 166 | 50.2 | 47 | 100 | 13 | | Spr 2016 | 6 | Read | 17 | 13 | 3.9 | 179 | 54.1 | 52 | 106 | 14 | | Spr 2016 | 6 | Read | 18 | 18 | 5.4 | 197 | 59.5 | 57 | 113 | 14 | | Spr 2016 | 6 | Read | 19 | 20 | 6.0 | 217 | 65.6 | 63 | 120 | 15 | | Spr 2016 | 6 | Read | 20 | 20 | 6.0 | 237 | 71.6 | 69 | 127 | 16 | | Spr 2016 | 6 | Read | 21 | 22 | 6.6 | 259 | 78.2 | 75 | 136 | 17 | | Spr 2016 | 6 | Read | 22 | 20 | 6.0 | 279 | 84.3 | 81 | 147 | 19 | | Spr 2016 | 6 | Read | 23 | 28 | 8.5 | 307 | 92.7 | 89 | 161 | 22 | | Spr 2016 | 6 | Read | 24 | 18 | 5.4 | 325 | 98.2 | 95 | 184 | 31 | | Spr 2016 | 6 | Read | 25 | 6 | 1.8 | 331 | 100.0 | 99 | 200 | 55 | Grade 7 | Grade / | | | | | | | | | | | |----------|-------|---------|-------|-------|---------|-------|---------|------------|-------|------| | | | Content | Raw | | | Cum. | Cum. | | Scale | | | Admin | Grade | Area | Score | Count | Percent | Count | Percent | Percentile | Score | S.E. | | Spr 2016 | 7 | Read | 0 | 18 | 5.5 | 18 | 5.5 | 3 | 1 | 69 | | Spr 2016 | 7 | Read | 1 | 2 | 0.6 | 20 | 6.1 | 6 | 1 | 39 | | Spr 2016 | 7 | Read | 2 | 1 | 0.3 | 21 | 6.4 | 6 | 1 | 28 | | Spr 2016 | 7 | Read | 3 | 0 | 0.0 | 21 | 6.4 | 6 | 1 | 24 | | Spr 2016 | 7 | Read | 4 | 1 | 0.3 | 22 | 6.7 | 7 | 11 | 21 | | Spr 2016 | 7 | Read | 5 | 0 | 0.0 | 22 | 6.7 | 7 | 22 | 20 | | Spr 2016 | 7 | Read | 6 | 2 | 0.6 | 24 | 7.3 | 7 | 32 | 19 | | Spr 2016 | 7 | Read | 7 | 5 | 1.5 | 29 | 8.8 | 8 | 40 | 18 | | Spr 2016 | 7 | Read | 8 | 9 | 2.7 | 38 | 11.5 | 10 | 48 | 17 | | Spr 2016 | 7 | Read | 9 | 21 | 6.4 | 59 | 17.9 | 15 | 56 | 17 | | Spr 2016 | 7 | Read | 10 | 17 | 5.2 | 76 | 23.0 | 20 | 63 | 16 | | Spr 2016 | 7 | Read | 11 | 8 | 2.4 | 84 | 25.5 | 24 | 70 | 16 | | Spr 2016 | 7 | Read | 12 | 14 | 4.2 | 98 | 29.7 | 28 | 77 | 16 | | Spr 2016 | 7 | Read | 13 | 22 | 6.7 | 120 | 36.4 | 33 | 84 | 16 | | Spr 2016 | 7 | Read | 14 | 16 | 4.8 | 136 | 41.2 | 39 | 91 | 16 | | Spr 2016 | 7 | Read | 15 | 14 | 4.2 | 150 | 45.5 | 43 | 98 | 16 | | Spr 2016 | 7 | Read | 16 | 15 | 4.5 | 165 | 50.0 | 48 | 106 | 17 | | Spr 2016 | 7 | Read | 17 | 17 | 5.2 | 182 | 55.2 | 53 | 114 | 17 | | Spr 2016 | 7 | Read | 18 | 16 | 4.8 | 198 | 60.0 | 58 | 122 | 18 | | Spr 2016 | 7 | Read | 19 | 29 | 8.8 | 227 | 68.8 | 64 | 131 | 19 | | Spr 2016 | 7 | Read | 20 | 22 | 6.7 | 249 | 75.5 | 72 | 140 | 20 | | Spr 2016 | 7 | Read | 21 | 16 | 4.8 | 265 | 80.3 | 78 | 152 | 21 | | Spr 2016 | 7 | Read | 22 | 22 | 6.7 | 287 | 87.0 | 84 | 165 | 24 | | Spr 2016 | 7 | Read | 23 | 17 | 5.2 | 304 | 92.1 | 90 | 183 | 29 | | Spr 2016 | 7 | Read | 24 | 17 | 5.2 | 321 | 97.3 | 95 | 200 | 39 | | Spr 2016 | 7 | Read | 25 | 9 | 2.7 | 330 | 100.0 | 99 | 200 | 69 | **Grade 8** | | | Content | Raw | | | Cum. | Cum. | | Scale | | |----------|-------|---------|-------|-------|---------|-------|---------|------------|-------|------| | Admin | Grade | Area | Score | Count | Percent | Count | Percent | Percentile | Score | S.E. | | Spr 2016 | 8 | Read | 0 | 9 | 2.8 | 9 | 2.8 | 1 | 1 | 56 | | Spr 2016 | 8 | Read | 1 | 0 | 0.0 | 9 | 2.8 | 3 | 1 | 32 | | Spr 2016 | 8 | Read | 2 | 0 | 0.0 | 9 | 2.8 | 3 | 7 | 23 | | Spr 2016 | 8 | Read | 3 | 1 | 0.3 | 10 | 3.2 | 3 | 21 | 19 | | Spr 2016 | 8 | Read | 4 | 0 | 0.0 | 10 | 3.2 | 3 | 32 | 17 | | Spr 2016 | 8 | Read | 5 | 2 | 0.6 | 12 | 3.8 | 3 | 41 | 16 | | Spr 2016 | 8 | Read | 6 | 3 | 0.9 | 15 | 4.7 | 4 | 49 | 15 | | Spr 2016 | 8 | Read | 7 | 13 | 4.1 | 28 | 8.8 | 7 | 56 | 14 | | Spr 2016 | 8 | Read | 8 | 11 | 3.5 | 39 | 12.3 | 11 | 63 | 14 | | Spr 2016 | 8 | Read | 9 | 13 | 4.1 | 52 | 16.4 | 14 | 69 | 14 | | Spr 2016 | 8 | Read | 10 | 14 | 4.4 | 66 | 20.8 | 19 | 75 | 13 | | Spr 2016 | 8 | Read | 11 | 15 | 4.7 | 81 | 25.6 | 23 | 81 | 13 | | Spr 2016 | 8 | Read | 12 | 12 | 3.8 | 93 | 29.3 | 27 | 87 | 13 | | Spr 2016 | 8 | Read | 13 | 21 | 6.6 | 114 | 36.0 | 33 | 93 | 13 | | Spr 2016 | 8 | Read | 14 | 16 | 5.0 | 130 | 41.0 | 38 | 98 | 13 | | Spr 2016 | 8 | Read | 15 | 16 | 5.0 | 146 | 46.1 | 44 | 104 | 13 | | Spr 2016 | 8 | Read | 16 | 12 | 3.8 | 158 | 49.8 | 48 | 110 | 14 | | Spr 2016 | 8 | Read | 17 | 13 | 4.1 | 171 | 53.9 | 52 | 116 | 14 | | Spr 2016 | 8 | Read | 18 | 19 | 6.0 | 190 | 59.9 | 57 | 123 | 15 | | Spr 2016 | 8 | Read | 19 | 23 | 7.3 | 213 | 67.2 | 64 | 130 | 15 | | Spr 2016 | 8 | Read | 20 | 22 | 6.9 | 235 | 74.1 | 71 | 138 | 16 | | Spr 2016 | 8 | Read | 21 | 26 | 8.2 | 261 | 82.3 | 78 | 147 | 17 | | Spr 2016 | 8 | Read | 22 | 21 | 6.6 | 282 | 89.0 | 86 | 159 | 19 | | Spr 2016 | 8 | Read | 23 | 20 | 6.3 | 302 | 95.3 | 92 | 173 | 23 | | Spr 2016 | 8 | Read | 24 | 13 | 4.1 | 315 | 99.4 | 97 | 197 | 32 | | Spr 2016 | 8 | Read | 25 | 2 | 0.6 | 317 | 100.0 | 99 | 200 | 56 | Grade 11 | | | Content | Raw | | | Cum. | Cum. | | Scale | | |----------|-------|---------|-------|-------|---------|-------|---------|------------|-------|------| | Admin | Grade | Area | Score | Count | Percent | Count | Percent | Percentile | Score | S.E. | | Spr 2016 | 11 | Read | 0 | 21 | 7.2 | 21 | 7.2 | 4 | 1 | 58 | | Spr 2016 | 11 | Read | 1 | 1 | 0.3 | 22 | 7.5 | 7 | 1 | 33 | | Spr 2016 | 11 | Read | 2 | 1 | 0.3 | 23 | 7.9 | 8 | 2 | 24 | | Spr 2016 | 11 | Read | 3 | 1 | 0.3 | 24 | 8.2 | 8 | 16 | 20 | | Spr 2016 | 11 | Read | 4 | 1 | 0.3 | 25 | 8.6 | 8 | 27 | 18 | | Spr 2016 | 11 | Read | 5 | 2 | 0.7 | 27 | 9.2 | 9 | 37 | 16 | | Spr 2016 | 11 | Read | 6 | 4 | 1.4 | 31 | 10.6 | 10 | 45 | 15 | | Spr 2016 | 11 | Read | 7 | 7 | 2.4 | 38 | 13.0 | 12 | 52 | 15 | | Spr 2016 | 11 | Read | 8 | 3 | 1.0 | 41 | 14.0 | 14 | 58 | 14 | | Spr 2016 | 11 | Read | 9 | 8 | 2.7 | 49 | 16.8 | 15 | 64 | 14 | | Spr 2016 | 11 | Read | 10 | 8 | 2.7 | 57 | 19.5 | 18 | 70 | 14 | | Spr 2016 | 11 | Read | 11 | 10 | 3.4 | 67 | 22.9 | 21 | 76 | 13 | | Spr 2016 | 11 | Read | 12 | 12 | 4.1 | 79 | 27.1 | 25 | 82 | 13 | | Spr 2016 | 11 | Read | 13 | 8 | 2.7 | 87 | 29.8 | 28 | 87 | 13 | | Spr 2016 | 11 | Read | 14 | 18 | 6.2 | 105 | 36.0 | 33 | 93 | 13 | | Spr 2016 | 11 | Read | 15 | 10 | 3.4 | 115 | 39.4 | 38 | 99 | 14 | | Spr 2016 | 11 | Read | 16 | 17 | 5.8 | 132 | 45.2 | 42 | 105 | 14 | | Spr 2016 | 11 | Read | 17 | 12 | 4.1 | 144 | 49.3 | 47 | 111 | 14 | | Spr 2016 | 11 | Read | 18 | 17 | 5.8 | 161 | 55.1 | 52 | 118 | 15 | | Spr 2016 | 11 | Read | 19 | 17 | 5.8 | 178 | 61.0 | 58 | 125 | 15 | | Spr 2016 | 11 | Read | 20 | 26 | 8.9 | 204 | 69.9 | 65 | 133 | 16 | | Spr 2016 | 11 | Read | 21 | 18 | 6.2 | 222 | 76.0 | 73 | 142 | 18 | | Spr 2016 | 11 | Read | 22 | 25 | 8.6 | 247 | 84.6 | 80 | 153 | 20 | | Spr 2016 | 11 | Read | 23 | 29 | 9.9 | 276 | 94.5 | 90 | 168 | 24 | | Spr 2016 | 11 | Read | 24 | 13 | 4.5 | 289 | 99.0 | 97 | 192 | 33 | | Spr 2016 | 11 | Read | 25 | 3 | 1.0 | 292 | 100.0 | 99 | 200 | 58 | # Appendix R: Mathematics Raw-to-Scale Conversion Tables and Distributions of Ability The charts are simple displays of Scale Score, Raw Score, and percentile rank. The raw score and percentile rank for any Scale Score can be read directly from chart. The proformance levels *Meets Standards* begins at a Scale Score of 85 and *Exceeds Standards* begins at 135. *Below Standards* is a Scale Score of 84 and below. The table is a traditional table that was used to create the chart. This table would be used to retrieve the Scale Score or percentile rank for a given raw score. It also includes counts and percentages at each score. Grade 3 | | | Content | Raw | | | Cum. | Cum. | | Scale | | |----------|-------|---------|-------|-------|---------|-------|---------|------------|-------|------| | Admin | Grade | Area | Score | Count | Percent | Count | Percent | Percentile | Score | S.E. | | Spr 2016 | 3 | Math | 0 | 34 | 13.8 | 34 | 13.8 | 7 | 1 | 55 | | Spr 2016 | 3 | Math | 1 | 3 | 1.2 | 37 | 15.0 | 14 | 1 | 31 | | Spr 2016 | 3 | Math | 2 | 2 | 0.8 | 39 | 15.9 | 15 | 1 | 23 | | Spr 2016 | 3 | Math | 3 | 1 | 0.4 | 40 | 16.3 | 16 | 16 | 19 | | Spr 2016 | 3 | Math | 4 | 3 | 1.2 | 43 | 17.5 | 17 | 27 | 17 | | Spr 2016 | 3 | Math | 5 | 0 | 0.0 | 43 | 17.5 | 17 | 36 | 16 | | Spr 2016 | 3 | Math | 6 | 1 | 0.4 | 44 | 17.9 | 18 | 44 | 15 | | Spr 2016 | 3 | Math | 7 | 4 | 1.6 | 48 | 19.5 | 19 | 52 | 14 | | Spr 2016 | 3 | Math | 8 | 6 | 2.4 | 54 | 22.0 | 21 | 59 | 14 | | Spr 2016 | 3 | Math | 9 | 9 | 3.7 | 63 | 25.6 | 24 | 65 | 14 | | Spr 2016 | 3 | Math | 10 | 7 | 2.8 | 70 | 28.5 | 27 | 71 | 13 | | Spr 2016 | 3 | Math | 11 | 9 | 3.7 | 79 | 32.1 | 30 | 77 | 13 | | Spr 2016 | 3 | Math | 12 | 10 | 4.1 | 89 | 36.2 | 34 | 83 | 13 | | Spr 2016 | 3 | Math | 13 | 10 | 4.1 | 99 | 40.2 | 38 | 88 | 13 | | Spr 2016 | 3 | Math | 14 | 13 | 5.3 | 112 | 45.5 | 43 | 94 | 13 | | Spr 2016 | 3 | Math | 15 | 11 | 4.5 | 123 | 50.0 | 48 | 100 | 13 | | Spr 2016 | 3 | Math | 16 | 11 | 4.5 | 134 | 54.5 | 52 | 106 | 13 | | Spr 2016 | 3 | Math | 17 | 10 | 4.1 | 144 | 58.5
 57 | 112 | 14 | | Spr 2016 | 3 | Math | 18 | 12 | 4.9 | 156 | 63.4 | 61 | 118 | 14 | | Spr 2016 | 3 | Math | 19 | 10 | 4.1 | 166 | 67.5 | 65 | 125 | 15 | | Spr 2016 | 3 | Math | 20 | 14 | 5.7 | 180 | 73.2 | 70 | 133 | 16 | | Spr 2016 | 3 | Math | 21 | 22 | 8.9 | 202 | 82.1 | 78 | 142 | 17 | | Spr 2016 | 3 | Math | 22 | 13 | 5.3 | 215 | 87.4 | 85 | 153 | 19 | | Spr 2016 | 3 | Math | 23 | 13 | 5.3 | 228 | 92.7 | 90 | 168 | 23 | | Spr 2016 | 3 | Math | 24 | 14 | 5.7 | 242 | 98.4 | 96 | 190 | 31 | | Spr 2016 | 3 | Math | 25 | 4 | 1.6 | 246 | 100.0 | 99 | 200 | 55 | Grade 4 | Graue 4 | | | | | | | | | | | |----------|-------|---------|-------|-------|---------|-------|---------|------------|-------|------| | | | Content | Raw | | | Cum. | Cum. | | Scale | | | Admin | Grade | Area | Score | Count | Percent | Count | Percent | Percentile | Score | S.E. | | Spr 2016 | 4 | Math | 0 | 24 | 9.2 | 24 | 9.2 | 5 | 1 | 68 | | Spr 2016 | 4 | Math | 1 | 0 | 0.0 | 24 | 9.2 | 9 | 1 | 38 | | Spr 2016 | 4 | Math | 2 | 0 | 0.0 | 24 | 9.2 | 9 | 1 | 28 | | Spr 2016 | 4 | Math | 3 | 2 | 0.8 | 26 | 10.0 | 10 | 1 | 23 | | Spr 2016 | 4 | Math | 4 | 0 | 0.0 | 26 | 10.0 | 10 | 1 | 20 | | Spr 2016 | 4 | Math | 5 | 1 | 0.4 | 27 | 10.4 | 10 | 6 | 19 | | Spr 2016 | 4 | Math | 6 | 0 | 0.0 | 27 | 10.4 | 10 | 15 | 18 | | Spr 2016 | 4 | Math | 7 | 2 | 0.8 | 29 | 11.2 | 11 | 23 | 17 | | Spr 2016 | 4 | Math | 8 | 0 | 0.0 | 29 | 11.2 | 11 | 30 | 16 | | Spr 2016 | 4 | Math | 9 | 4 | 1.5 | 33 | 12.7 | 12 | 37 | 15 | | Spr 2016 | 4 | Math | 10 | 5 | 1.9 | 38 | 14.6 | 14 | 43 | 15 | | Spr 2016 | 4 | Math | 11 | 9 | 3.5 | 47 | 18.1 | 16 | 49 | 15 | | Spr 2016 | 4 | Math | 12 | 14 | 5.4 | 61 | 23.5 | 21 | 55 | 15 | | Spr 2016 | 4 | Math | 13 | 6 | 2.3 | 67 | 25.8 | 25 | 60 | 14 | | Spr 2016 | 4 | Math | 14 | 12 | 4.6 | 79 | 30.4 | 28 | 66 | 14 | | Spr 2016 | 4 | Math | 15 | 8 | 3.1 | 87 | 33.5 | 32 | 72 | 14 | | Spr 2016 | 4 | Math | 16 | 5 | 1.9 | 92 | 35.4 | 34 | 77 | 14 | | Spr 2016 | 4 | Math | 17 | 11 | 4.2 | 103 | 39.6 | 38 | 83 | 14 | | Spr 2016 | 4 | Math | 18 | 13 | 5.0 | 116 | 44.6 | 42 | 89 | 15 | | Spr 2016 | 4 | Math | 19 | 8 | 3.1 | 124 | 47.7 | 46 | 95 | 15 | | Spr 2016 | 4 | Math | 20 | 13 | 5.0 | 137 | 52.7 | 50 | 101 | 15 | | Spr 2016 | 4 | Math | 21 | 9 | 3.5 | 146 | 56.2 | 54 | 107 | 16 | | Spr 2016 | 4 | Math | 22 | 12 | 4.6 | 158 | 60.8 | 58 | 114 | 16 | | Spr 2016 | 4 | Math | 23 | 4 | 1.5 | 162 | 62.3 | 62 | 121 | 17 | | Spr 2016 | 4 | Math | 24 | 16 | 6.2 | 178 | 68.5 | 65 | 129 | 18 | | Spr 2016 | 4 | Math | 25 | 17 | 6.5 | 195 | 75.0 | 72 | 138 | 19 | | Spr 2016 | 4 | Math | 26 | 14 | 5.4 | 209 | 80.4 | 78 | 149 | 21 | | Spr 2016 | 4 | Math | 27 | 17 | 6.5 | 226 | 86.9 | 84 | 162 | 23 | | Spr 2016 | 4 | Math | 28 | 11 | 4.2 | 237 | 91.2 | 89 | 179 | 28 | | Spr 2016 | 4 | Math | 29 | 13 | 5.0 | 250 | 96.2 | 94 | 200 | 38 | | Spr 2016 | 4 | Math | 30 | 10 | 3.8 | 260 | 100.0 | 98 | 200 | 68 | ## **Grade 5** | Graue 3 | | | | | | | | | | | |----------|-------|---------|-------|-------|---------|-------|---------|------------|-------|------| | | | Content | Raw | | | Cum. | Cum. | | Scale | | | Admin | Grade | Area | Score | Count | Percent | Count | Percent | Percentile | Score | S.E. | | Spr 2016 | 5 | Math | 0 | 20 | 6.4 | 20 | 6.4 | 3 | 1 | 68 | | Spr 2016 | 5 | Math | 1 | 1 | 0.3 | 21 | 6.8 | 7 | 1 | 38 | | Spr 2016 | 5 | Math | 2 | 1 | 0.3 | 22 | 7.1 | 7 | 1 | 27 | | Spr 2016 | 5 | Math | 3 | 0 | 0.0 | 22 | 7.1 | 7 | 1 | 23 | | Spr 2016 | 5 | Math | 4 | 2 | 0.6 | 24 | 7.7 | 7 | 6 | 20 | | Spr 2016 | 5 | Math | 5 | 0 | 0.0 | 24 | 7.7 | 8 | 16 | 19 | | Spr 2016 | 5 | Math | 6 | 1 | 0.3 | 25 | 8.0 | 8 | 25 | 18 | | Spr 2016 | 5 | Math | 7 | 3 | 1.0 | 28 | 9.0 | 9 | 33 | 17 | | Spr 2016 | 5 | Math | 8 | 2 | 0.6 | 30 | 9.6 | 9 | 40 | 16 | | Spr 2016 | 5 | Math | 9 | 5 | 1.6 | 35 | 11.3 | 10 | 47 | 16 | | Spr 2016 | 5 | Math | 10 | 4 | 1.3 | 39 | 12.5 | 12 | 54 | 15 | | Spr 2016 | 5 | Math | 11 | 8 | 2.6 | 47 | 15.1 | 14 | 60 | 15 | | Spr 2016 | 5 | Math | 12 | 11 | 3.5 | 58 | 18.6 | 17 | 66 | 15 | | Spr 2016 | 5 | Math | 13 | 15 | 4.8 | 73 | 23.5 | 21 | 72 | 15 | | Spr 2016 | 5 | Math | 14 | 11 | 3.5 | 84 | 27.0 | 25 | 77 | 14 | | Spr 2016 | 5 | Math | 15 | 15 | 4.8 | 99 | 31.8 | 29 | 83 | 14 | | Spr 2016 | 5 | Math | 16 | 21 | 6.8 | 120 | 38.6 | 35 | 89 | 15 | | Spr 2016 | 5 | Math | 17 | 11 | 3.5 | 131 | 42.1 | 40 | 95 | 15 | | Spr 2016 | 5 | Math | 18 | 14 | 4.5 | 145 | 46.6 | 44 | 101 | 15 | | Spr 2016 | 5 | Math | 19 | 12 | 3.9 | 157 | 50.5 | 49 | 107 | 15 | | Spr 2016 | 5 | Math | 20 | 13 | 4.2 | 170 | 54.7 | 53 | 113 | 15 | | Spr 2016 | 5 | Math | 21 | 9 | 2.9 | 179 | 57.6 | 56 | 119 | 16 | | Spr 2016 | 5 | Math | 22 | 14 | 4.5 | 193 | 62.1 | 60 | 126 | 16 | | Spr 2016 | 5 | Math | 23 | 9 | 2.9 | 202 | 65.0 | 64 | 134 | 17 | | Spr 2016 | 5 | Math | 24 | 14 | 4.5 | 216 | 69.5 | 67 | 142 | 18 | | Spr 2016 | 5 | Math | 25 | 16 | 5.1 | 232 | 74.6 | 72 | 151 | 19 | | Spr 2016 | 5 | Math | 26 | 21 | 6.8 | 253 | 81.4 | 78 | 161 | 21 | | Spr 2016 | 5 | Math | 27 | 16 | 5.1 | 269 | 86.5 | 84 | 174 | 23 | | Spr 2016 | 5 | Math | 28 | 17 | 5.5 | 286 | 92.0 | 89 | 191 | 27 | | Spr 2016 | 5 | Math | 29 | 17 | 5.5 | 303 | 97.4 | 95 | 200 | 38 | | Spr 2016 | 5 | Math | 30 | 8 | 2.6 | 311 | 100.0 | 99 | 200 | 68 | **Grade 6** | Grade 0 | | | | | | | | | | | |----------|-------|---------|-------|-------|---------|-------|---------|------------|-------|------| | | | Content | Raw | | | Cum. | Cum. | | Scale | | | Admin | Grade | Area | Score | Count | Percent | Count | Percent | Percentile | Score | S.E. | | Spr 2016 | 6 | Math | 0 | 14 | 4.2 | 14 | 4.2 | 2 | 1 | 52 | | Spr 2016 | 6 | Math | 1 | 1 | 0.3 | 15 | 4.5 | 4 | 1 | 29 | | Spr 2016 | 6 | Math | 2 | 1 | 0.3 | 16 | 4.8 | 5 | 1 | 21 | | Spr 2016 | 6 | Math | 3 | 0 | 0.0 | 16 | 4.8 | 5 | 10 | 18 | | Spr 2016 | 6 | Math | 4 | 1 | 0.3 | 17 | 5.1 | 5 | 20 | 16 | | Spr 2016 | 6 | Math | 5 | 1 | 0.3 | 18 | 5.4 | 5 | 28 | 14 | | Spr 2016 | 6 | Math | 6 | 4 | 1.2 | 22 | 6.6 | 6 | 35 | 13 | | Spr 2016 | 6 | Math | 7 | 3 | 0.9 | 25 | 7.6 | 7 | 41 | 13 | | Spr 2016 | 6 | Math | 8 | 4 | 1.2 | 29 | 8.8 | 8 | 46 | 12 | | Spr 2016 | 6 | Math | 9 | 8 | 2.4 | 37 | 11.2 | 10 | 51 | 12 | | Spr 2016 | 6 | Math | 10 | 9 | 2.7 | 46 | 13.9 | 13 | 56 | 12 | | Spr 2016 | 6 | Math | 11 | 10 | 3.0 | 56 | 16.9 | 15 | 61 | 11 | | Spr 2016 | 6 | Math | 12 | 12 | 3.6 | 68 | 20.5 | 19 | 65 | 11 | | Spr 2016 | 6 | Math | 13 | 12 | 3.6 | 80 | 24.2 | 22 | 70 | 11 | | Spr 2016 | 6 | Math | 14 | 9 | 2.7 | 89 | 26.9 | 26 | 74 | 11 | | Spr 2016 | 6 | Math | 15 | 19 | 5.7 | 108 | 32.6 | 30 | 78 | 11 | | Spr 2016 | 6 | Math | 16 | 12 | 3.6 | 120 | 36.3 | 34 | 82 | 11 | | Spr 2016 | 6 | Math | 17 | 18 | 5.4 | 138 | 41.7 | 39 | 87 | 11 | | Spr 2016 | 6 | Math | 18 | 12 | 3.6 | 150 | 45.3 | 44 | 91 | 11 | | Spr 2016 | 6 | Math | 19 | 16 | 4.8 | 166 | 50.2 | 48 | 95 | 11 | | Spr 2016 | 6 | Math | 20 | 23 | 6.9 | 189 | 57.1 | 54 | 100 | 11 | | Spr 2016 | 6 | Math | 21 | 12 | 3.6 | 201 | 60.7 | 59 | 105 | 12 | | Spr 2016 | 6 | Math | 22 | 14 | 4.2 | 215 | 65.0 | 63 | 110 | 12 | | Spr 2016 | 6 | Math | 23 | 15 | 4.5 | 230 | 69.5 | 67 | 115 | 13 | | Spr 2016 | 6 | Math | 24 | 23 | 6.9 | 253 | 76.4 | 73 | 121 | 13 | | Spr 2016 | 6 | Math | 25 | 13 | 3.9 | 266 | 80.4 | 78 | 128 | 14 | | Spr 2016 | 6 | Math | 26 | 18 | 5.4 | 284 | 85.8 | 83 | 136 | 16 | | Spr 2016 | 6 | Math | 27 | 17 | 5.1 | 301 | 90.9 | 88 | 145 | 18 | | Spr 2016 | 6 | Math | 28 | 14 | 4.2 | 315 | 95.2 | 93 | 158 | 21 | | Spr 2016 | 6 | Math | 29 | 9 | 2.7 | 324 | 97.9 | 97 | 179 | 29 | | Spr 2016 | 6 | Math | 30 | 7 | 2.1 | 331 | 100.0 | 99 | 200 | 52 | Grade 7 | | | Content | Raw | | | Cum. | Cum. | | Scale | | |----------|-------|---------|-------|-------|---------|-------|---------|------------|-------|------| | Admin | Grade | Area | Score | Count | Percent | Count | Percent | Percentile | Score | S.E. | | Spr 2016 | 7 | Math | 0 | 20 | 5.9 | 20 | 5.9 | 3 | 1 | 63 | | Spr 2016 | 7 | Math | 1 | 1 | 0.3 | 21 | 6.2 | 6 | 1 | 35 | | Spr 2016 | 7 | Math | 2 | 0 | 0.0 | 21 | 6.2 | 6 | 1 | 26 | | Spr 2016 | 7 | Math | 3 | 1 | 0.3 | 22 | 6.5 | 6 | 1 | 21 | | Spr 2016 | 7 | Math | 4 | 1 | 0.3 | 23 | 6.8 | 7 | 9 | 19 | | Spr 2016 | 7 | Math | 5 | 0 | 0.0 | 23 | 6.8 | 7 | 18 | 17 | | Spr 2016 | 7 | Math | 6 | 1 | 0.3 | 24 | 7.1 | 7 | 26 | 16 | | Spr 2016 | 7 | Math | 7 | 3 | 0.9 | 27 | 8.0 | 8 | 34 | 15 | | Spr 2016 | 7 | Math | 8 | 8 | 2.4 | 35 | 10.4 | 9 | 40 | 15 | | Spr 2016 | 7 | Math | 9 | 8 | 2.4 | 43 | 12.7 | 12 | 47 | 14 | | Spr 2016 | 7 | Math | 10 | 14 | 4.1 | 57 | 16.9 | 15 | 53 | 14 | | Spr 2016 | 7 | Math | 11 | 10 | 3.0 | 67 | 19.8 | 18 | 58 | 14 | | Spr 2016 | 7 | Math | 12 | 11 | 3.3 | 78 | 23.1 | 21 | 64 | 14 | | Spr 2016 | 7 | Math | 13 | 16 | 4.7 | 94 | 27.8 | 25 | 69 | 13 | | Spr 2016 | 7 | Math | 14 | 18 | 5.3 | 112 | 33.1 | 30 | 74 | 13 | | Spr 2016 | 7 | Math | 15 | 14 | 4.1 | 126 | 37.3 | 35 | 79 | 13 | | Spr 2016 | 7 | Math | 16 | 7 | 2.1 | 133 | 39.3 | 38 | 84 | 13 | | Spr 2016 | 7 | Math | 17 | 11 | 3.3 | 144 | 42.6 | 41 | 90 | 13 | | Spr 2016 | 7 | Math | 18 | 15 | 4.4 | 159 | 47.0 | 45 | 95 | 14 | | Spr 2016 | 7 | Math | 19 | 8 | 2.4 | 167 | 49.4 | 48 | 100 | 14 | | Spr 2016 | 7 | Math | 20 | 14 | 4.1 | 181 | 53.6 | 51 | 106 | 14 | | Spr 2016 | 7 | Math | 21 | 12 | 3.6 | 193 | 57.1 | 55 | 112 | 14 | | Spr 2016 | 7 | Math | 22 | 18 | 5.3 | 211 | 62.4 | 60 | 118 | 15 | | Spr 2016 | 7 | Math | 23 | 18 | 5.3 | 229 | 67.8 | 65 | 125 | 15 | | Spr 2016 | 7 | Math | 24 | 17 | 5.0 | 246 | 72.8 | 70 | 132 | 16 | | Spr 2016 | 7 | Math | 25 | 19 | 5.6 | 265 | 78.4 | 76 | 140 | 17 | | Spr 2016 | 7 | Math | 26 | 22 | 6.5 | 287 | 84.9 | 82 | 150 | 19 | | Spr 2016 | 7 | Math | 27 | 17 | 5.0 | 304 | 89.9 | 87 | 162 | 21 | | Spr 2016 | 7 | Math | 28 | 17 | 5.0 | 321 | 95.0 | 92 | 177 | 26 | | Spr 2016 | 7 | Math | 29 | 15 | 4.4 | 336 | 99.4 | 97 | 200 | 35 | | Spr 2016 | 7 | Math | 30 | 2 | 0.6 | 338 | 100.0 | 99 | 200 | 63 | **Grade 8** | Graue o | | Content |
Raw | | | Cum. | Cum. | | Scale | | |----------|-------|---------|-------|-------|---------|-------|---------|------------|-------|------| | Admin | Grade | Area | Score | Count | Percent | Count | Percent | Percentile | Score | S.E. | | Spr 2016 | 8 | Math | 0 | 10 | 3.1 | 10 | 3.1 | 2 | 1 | 70 | | Spr 2016 | 8 | Math | 1 | 0 | 0.0 | 10 | 3.1 | 3 | 1 | 39 | | Spr 2016 | 8 | Math | 2 | 0 | 0.0 | 10 | 3.1 | 3 | 1 | 28 | | Spr 2016 | 8 | Math | 3 | 1 | 0.3 | 11 | 3.4 | 3 | 1 | 24 | | Spr 2016 | 8 | Math | 4 | 1 | 0.3 | 12 | 3.7 | 4 | 1 | 21 | | Spr 2016 | 8 | Math | 5 | 0 | 0.0 | 12 | 3.7 | 4 | 1 | 19 | | Spr 2016 | 8 | Math | 6 | 2 | 0.6 | 14 | 4.3 | 4 | 8 | 18 | | Spr 2016 | 8 | Math | 7 | 1 | 0.3 | 15 | 4.6 | 4 | 16 | 17 | | Spr 2016 | 8 | Math | 8 | 7 | 2.2 | 22 | 6.8 | 6 | 23 | 16 | | Spr 2016 | 8 | Math | 9 | 8 | 2.5 | 30 | 9.2 | 8 | 30 | 16 | | Spr 2016 | 8 | Math | 10 | 10 | 3.1 | 40 | 12.3 | 11 | 37 | 16 | | Spr 2016 | 8 | Math | 11 | 11 | 3.4 | 51 | 15.7 | 14 | 43 | 15 | | Spr 2016 | 8 | Math | 12 | 13 | 4.0 | 64 | 19.7 | 18 | 49 | 15 | | Spr 2016 | 8 | Math | 13 | 10 | 3.1 | 74 | 22.8 | 21 | 55 | 15 | | Spr 2016 | 8 | Math | 14 | 14 | 4.3 | 88 | 27.1 | 25 | 60 | 15 | | Spr 2016 | 8 | Math | 15 | 12 | 3.7 | 100 | 30.8 | 29 | 66 | 15 | | Spr 2016 | 8 | Math | 16 | 10 | 3.1 | 110 | 33.8 | 32 | 72 | 15 | | Spr 2016 | 8 | Math | 17 | 13 | 4.0 | 123 | 37.8 | 36 | 78 | 15 | | Spr 2016 | 8 | Math | 18 | 16 | 4.9 | 139 | 42.8 | 40 | 84 | 15 | | Spr 2016 | 8 | Math | 19 | 13 | 4.0 | 152 | 46.8 | 45 | 90 | 15 | | Spr 2016 | 8 | Math | 20 | 16 | 4.9 | 168 | 51.7 | 49 | 96 | 16 | | Spr 2016 | 8 | Math | 21 | 14 | 4.3 | 182 | 56.0 | 54 | 103 | 16 | | Spr 2016 | 8 | Math | 22 | 12 | 3.7 | 194 | 59.7 | 58 | 110 | 17 | | Spr 2016 | 8 | Math | 23 | 20 | 6.2 | 214 | 65.8 | 63 | 117 | 17 | | Spr 2016 | 8 | Math | 24 | 18 | 5.5 | 232 | 71.4 | 69 | 126 | 18 | | Spr 2016 | 8 | Math | 25 | 20 | 6.2 | 252 | 77.5 | 74 | 135 | 19 | | Spr 2016 | 8 | Math | 26 | 14 | 4.3 | 266 | 81.8 | 80 | 146 | 21 | | Spr 2016 | 8 | Math | 27 | 28 | 8.6 | 294 | 90.5 | 86 | 159 | 24 | | Spr 2016 | 8 | Math | 28 | 13 | 4.0 | 307 | 94.5 | 92 | 176 | 28 | | Spr 2016 | 8 | Math | 29 | 12 | 3.7 | 319 | 98.2 | 96 | 200 | 39 | | Spr 2016 | 8 | Math | 30 | 6 | 1.8 | 325 | 100.0 | 99 | 200 | 70 | Grade 11 | Grade 11 | | Content | Raw | | | Cum. | Cum. | | Scale | | |----------|-------|---------|-------|-------|---------|-------|---------|------------|-------|------| | Admin | Grade | Area | Score | Count | Percent | Count | Percent | Percentile | Score | S.E. | | Spr 2016 | 11 | Math | 0 | 22 | 7.1 | 22 | 7.1 | 4 | 1 | 93 | | Spr 2016 | 11 | Math | 1 | 4 | 1.3 | 26 | 8.4 | 8 | 1 | 52 | | Spr 2016 | 11 | Math | 2 | 1 | 0.3 | 27 | 8.7 | 9 | 1 | 38 | | Spr 2016 | 11 | Math | 3 | 0 | 0.0 | 27 | 8.7 | 9 | 1 | 32 | | Spr 2016 | 11 | Math | 4 | 0 | 0.0 | 27 | 8.7 | 9 | 1 | 28 | | Spr 2016 | 11 | Math | 5 | 0 | 0.0 | 27 | 8.7 | 9 | 1 | 26 | | Spr 2016 | 11 | Math | 6 | 3 | 1.0 | 30 | 9.6 | 9 | 1 | 24 | | Spr 2016 | 11 | Math | 7 | 0 | 0.0 | 30 | 9.6 | 10 | 1 | 23 | | Spr 2016 | 11 | Math | 8 | 1 | 0.3 | 31 | 10.0 | 10 | 1 | 22 | | Spr 2016 | 11 | Math | 9 | 10 | 3.2 | 41 | 13.2 | 12 | 10 | 21 | | Spr 2016 | 11 | Math | 10 | 10 | 3.2 | 51 | 16.4 | 15 | 19 | 21 | | Spr 2016 | 11 | Math | 11 | 5 | 1.6 | 56 | 18.0 | 17 | 27 | 20 | | Spr 2016 | 11 | Math | 12 | 9 | 2.9 | 65 | 20.9 | 19 | 35 | 20 | | Spr 2016 | 11 | Math | 13 | 3 | 1.0 | 68 | 21.9 | 21 | 43 | 20 | | Spr 2016 | 11 | Math | 14 | 15 | 4.8 | 83 | 26.7 | 24 | 51 | 20 | | Spr 2016 | 11 | Math | 15 | 7 | 2.3 | 90 | 28.9 | 28 | 59 | 20 | | Spr 2016 | 11 | Math | 16 | 9 | 2.9 | 99 | 31.8 | 30 | 66 | 20 | | Spr 2016 | 11 | Math | 17 | 10 | 3.2 | 109 | 35.0 | 33 | 74 | 20 | | Spr 2016 | 11 | Math | 18 | 14 | 4.5 | 123 | 39.5 | 37 | 82 | 20 | | Spr 2016 | 11 | Math | 19 | 9 | 2.9 | 132 | 42.4 | 41 | 90 | 20 | | Spr 2016 | 11 | Math | 20 | 17 | 5.5 | 149 | 47.9 | 45 | 98 | 21 | | Spr 2016 | 11 | Math | 21 | 13 | 4.2 | 162 | 52.1 | 50 | 107 | 21 | | Spr 2016 | 11 | Math | 22 | 11 | 3.5 | 173 | 55.6 | 54 | 116 | 22 | | Spr 2016 | 11 | Math | 23 | 18 | 5.8 | 191 | 61.4 | 59 | 126 | 23 | | Spr 2016 | 11 | Math | 24 | 22 | 7.1 | 213 | 68.5 | 65 | 137 | 24 | | Spr 2016 | 11 | Math | 25 | 17 | 5.5 | 230 | 74.0 | 71 | 149 | 26 | | Spr 2016 | 11 | Math | 26 | 21 | 6.8 | 251 | 80.7 | 77 | 163 | 28 | | Spr 2016 | 11 | Math | 27 | 15 | 4.8 | 266 | 85.5 | 83 | 181 | 32 | | Spr 2016 | 11 | Math | 28 | 21 | 6.8 | 287 | 92.3 | 89 | 200 | 38 | | Spr 2016 | 11 | Math | 29 | 15 | 4.8 | 302 | 97.1 | 95 | 200 | 52 | | Spr 2016 | 11 | Math | 30 | 9 | 2.9 | 311 | 100.0 | 99 | 200 | 93 | # **Appendix S: Science Raw-to-Scale Conversion Tables and Distributions of Ability** The charts are simple displays of Scale Score, Raw Score, and percentile rank. The raw score and percentile rank for any Scale Score can be read directly from chart. The proformance levels *Meets Standards* begins at a Scale Score of 85 and *Exceeds Standards* begins at 135. *Below Standards* is a Scale Score of 84 and below. The table is a traditional table that was used to create the chart. This table would be used to retrieve the Scale Score or percentile rank for a given raw score. It also includes counts and percentages at each score. **Grade 5** | Grade 5 | | | | | | | | | Scale | | |----------|-------|---------|-------|-------|---------|-------|---------|------------|-------|------| | | | Content | Raw | | | Cum. | Cum. | | Scor | | | Admin | Grade | Area | Score | Count | Percent | Count | Percent | Percentile | е | S.E. | | Spr 2016 | 5 | Science | 0 | 21 | 6.8 | 21 | 6.8 | 3 | 1 | 65 | | Spr 2016 | 5 | Science | 1 | 1 | 0.3 | 22 | 7.1 | 7 | 1 | 37 | | Spr 2016 | 5 | Science | 2 | 2 | 0.6 | 24 | 7.8 | 7 | 1 | 27 | | Spr 2016 | 5 | Science | 3 | 1 | 0.3 | 25 | 8.1 | 8 | 2 | 23 | | Spr 2016 | 5 | Science | 4 | 1 | 0.3 | 26 | 8.4 | 8 | 15 | 20 | | Spr 2016 | 5 | Science | 5 | 2 | 0.6 | 28 | 9.1 | 9 | 26 | 19 | | Spr 2016 | 5 | Science | 6 | 1 | 0.3 | 29 | 9.4 | 9 | 35 | 18 | | Spr 2016 | 5 | Science | 7 | 2 | 0.6 | 31 | 10.1 | 10 | 44 | 17 | | Spr 2016 | 5 | Science | 8 | 8 | 2.6 | 39 | 12.7 | 11 | 51 | 16 | | Spr 2016 | 5 | Science | 9 | 10 | 3.2 | 49 | 15.9 | 14 | 59 | 16 | | Spr 2016 | 5 | Science | 10 | 11 | 3.6 | 60 | 19.5 | 18 | 66 | 15 | | Spr 2016 | 5 | Science | 11 | 11 | 3.6 | 71 | 23.1 | 21 | 72 | 15 | | Spr 2016 | 5 | Science | 12 | 12 | 3.9 | 83 | 26.9 | 25 | 79 | 15 | | Spr 2016 | 5 | Science | 13 | 17 | 5.5 | 100 | 32.5 | 30 | 86 | 15 | | Spr 2016 | 5 | Science | 14 | 8 | 2.6 | 108 | 35.1 | 34 | 92 | 15 | | Spr 2016 | 5 | Science | 15 | 12 | 3.9 | 120 | 39.0 | 37 | 99 | 15 | | Spr 2016 | 5 | Science | 16 | 16 | 5.2 | 136 | 44.2 | 42 | 106 | 16 | | Spr 2016 | 5 | Science | 17 | 13 | 4.2 | 149 | 48.4 | 46 | 113 | 16 | | Spr 2016 | 5 | Science | 18 | 21 | 6.8 | 170 | 55.2 | 52 | 120 | 17 | | Spr 2016 | 5 | Science | 19 | 21 | 6.8 | 191 | 62.0 | 59 | 129 | 17 | | Spr 2016 | 5 | Science | 20 | 32 | 10.4 | 223 | 72.4 | 67 | 138 | 18 | | Spr 2016 | 5 | Science | 21 | 16 | 5.2 | 239 | 77.6 | 75 | 148 | 20 | | Spr 2016 | 5 | Science | 22 | 16 | 5.2 | 255 | 82.8 | 80 | 160 | 22 | | Spr 2016 | 5 | Science | 23 | 25 | 8.1 | 280 | 90.9 | 87 | 177 | 26 | | Spr 2016 | 5 | Science | 24 | 20 | 6.5 | 300 | 97.4 | 94 | 200 | 36 | | Spr 2016 | 5 | Science | 25 | 8 | 2.6 | 308 | 100.0 | 99 | 200 | 65 | | | | Content | Raw | | | Cum. | Cum. | | Scale | | |----------|-------|---------|-------|-------|---------|-------|---------|------------|-------|------| | Admin | Grade | Area | Score | Count | Percent | Count | Percent | Percentile | Score | S.E. | | Spr 2016 | 8 | Science | 0 | 10 | 3.2 | 10 | 3.2 | 2 | 1 | 72 | | Spr 2016 | 8 | Science | 1 | 1 | 0.3 | 11 | 3.5 | 3 | 1 | 40 | | Spr 2016 | 8 | Science | 2 | 0 | 0.0 | 11 | 3.5 | 4 | 1 | 29 | | Spr 2016 | 8 | Science | 3 | 1 | 0.3 | 12 | 3.8 | 4 | 1 | 24 | | Spr 2016 | 8 | Science | 4 | 0 | 0.0 | 12 | 3.8 | 4 | 2 | 22 | | Spr 2016 | 8 | Science | 5 | 1 | 0.3 | 13 | 4.2 | 4 | 13 | 20 | | Spr 2016 | 8 | Science | 6 | 4 | 1.3 | 17 | 5.4 | 5 | 23 | 19 | | Spr 2016 | 8 | Science | 7 | 3 | 1.0 | 20 | 6.4 | 6 | 32 | 18 | | Spr 2016 | 8 | Science | 8 | 11 | 3.5 | 31 | 9.9 | 8 | 40 | 17 | | Spr 2016 | 8 | Science | 9 | 18 | 5.8 | 49 | 15.7 | 13 | 47 | 17 | | Spr 2016 | 8 | Science | 10 | 11 | 3.5 | 60 | 19.2 | 17 | 54 | 17 | | Spr 2016 | 8 | Science | 11 | 12 | 3.8 | 72 | 23.0 | 21 | 61 | 16 | | Spr 2016 | 8 | Science | 12 | 13 | 4.2 | 85 | 27.2 | 25 | 68 | 16 | | Spr 2016 | 8 | Science | 13 | 14 | 4.5 | 99 | 31.6 | 29 | 75 | 16 | | Spr 2016 | 8 | Science | 14 | 13 | 4.2 | 112 | 35.8 | 34 | 82 | 16 | | Spr 2016 | 8 | Science | 15 | 12 | 3.8 | 124 | 39.6 | 38 | 89 | 17 | | Spr 2016 | 8 | Science | 16 | 19 | 6.1 | 143 | 45.7 | 43 | 96 | 17 | | Spr 2016 | 8 | Science | 17 | 20 | 6.4 | 163 | 52.1 | 49 | 103 | 17 | | Spr 2016 | 8 | Science | 18 | 13 | 4.2 | 176 | 56.2 | 54 | 111 | 18 | | Spr 2016 | 8 | Science | 19 | 23 | 7.3 | 199 | 63.6 | 60 | 120 | 19 | | Spr 2016 | 8 | Science | 20 | 25 | 8.0 | 224 | 71.6 | 68 | 130 | 20 | | Spr 2016 | 8 | Science | 21 | 23 | 7.3 | 247 | 78.9 | 75 | 141 | 22 | | Spr 2016 | 8 | Science | 22 | 28 | 8.9 | 275 | 87.9 | 83 | 154 | 24 | | Spr 2016 | 8 | Science | 23 | 17 | 5.4 | 292 | 93.3 | 91 | 172 | 29 | | Spr 2016 | 8 | Science | 24 | 15 | 4.8 | 307 | 98.1 | 96 | 200 | 40 | | Spr 2016 | 8 | Science | 25 | 6 | 1.9 | 313 | 100.0 | 99 | 200 | 72 | Grade 11 | | | Content | Raw | | | Cum. | Cum. | | Scale | | |----------|-------|---------|-------|-------|---------|-------|---------|------------|-------|------| | Admin | Grade | Area | Score | Count | Percent | Count | Percent | Percentile | Score | S.E. | | Spr 2016 | 11 | Science | 0 | 21 | 7.2 | 21 | 7.2 | 4 | 1 | 62 | | Spr 2016 | 11 | Science | 1 | 1 | 0.3 | 22 | 7.5 | 7 | 1 | 35 | | Spr 2016 | 11 | Science | 2 | 0 | 0.0 | 22 | 7.5 | 8 | 1 | 25 | | Spr 2016 | 11 | Science | 3 | 2 | 0.7 | 24 | 8.2 | 8 | 1 | 21 | | Spr 2016 | 11 | Science | 4 | 1 |
0.3 | 25 | 8.6 | 8 | 7 | 19 | | Spr 2016 | 11 | Science | 5 | 1 | 0.3 | 26 | 8.9 | 9 | 16 | 17 | | Spr 2016 | 11 | Science | 6 | 1 | 0.3 | 27 | 9.2 | 9 | 25 | 16 | | Spr 2016 | 11 | Science | 7 | 4 | 1.4 | 31 | 10.6 | 10 | 32 | 16 | | Spr 2016 | 11 | Science | 8 | 4 | 1.4 | 35 | 12.0 | 11 | 39 | 15 | | Spr 2016 | 11 | Science | 9 | 3 | 1.0 | 38 | 13.0 | 13 | 46 | 14 | | Spr 2016 | 11 | Science | 10 | 9 | 3.1 | 47 | 16.1 | 15 | 52 | 14 | | Spr 2016 | 11 | Science | 11 | 8 | 2.7 | 55 | 18.8 | 17 | 57 | 14 | | Spr 2016 | 11 | Science | 12 | 6 | 2.1 | 61 | 20.9 | 20 | 63 | 14 | | Spr 2016 | 11 | Science | 13 | 11 | 3.8 | 72 | 24.7 | 23 | 68 | 13 | | Spr 2016 | 11 | Science | 14 | 8 | 2.7 | 80 | 27.4 | 26 | 74 | 13 | | Spr 2016 | 11 | Science | 15 | 6 | 2.1 | 86 | 29.5 | 28 | 79 | 13 | | Spr 2016 | 11 | Science | 16 | 5 | 1.7 | 91 | 31.2 | 30 | 84 | 13 | | Spr 2016 | 11 | Science | 17 | 12 | 4.1 | 103 | 35.3 | 33 | 89 | 13 | | Spr 2016 | 11 | Science | 18 | 8 | 2.7 | 111 | 38.0 | 37 | 94 | 13 | | Spr 2016 | 11 | Science | 19 | 11 | 3.8 | 122 | 41.8 | 40 | 100 | 14 | | Spr 2016 | 11 | Science | 20 | 11 | 3.8 | 133 | 45.5 | 44 | 105 | 14 | | Spr 2016 | 11 | Science | 21 | 13 | 4.5 | 146 | 50.0 | 48 | 111 | 14 | | Spr 2016 | 11 | Science | 22 | 15 | 5.1 | 161 | 55.1 | 53 | 117 | 15 | | Spr 2016 | 11 | Science | 23 | 12 | 4.1 | 173 | 59.2 | 57 | 124 | 15 | | Spr 2016 | 11 | Science | 24 | 18 | 6.2 | 191 | 65.4 | 62 | 131 | 16 | | Spr 2016 | 11 | Science | 25 | 25 | 8.6 | 216 | 74.0 | 70 | 139 | 17 | | Spr 2016 | 11 | Science | 26 | 20 | 6.8 | 236 | 80.8 | 77 | 149 | 19 | | Spr 2016 | 11 | Science | 27 | 19 | 6.5 | 255 | 87.3 | 84 | 160 | 21 | | Spr 2016 | 11 | Science | 28 | 14 | 4.8 | 269 | 92.1 | 90 | 176 | 25 | | Spr 2016 | 11 | Science | 29 | 17 | 5.8 | 286 | 97.9 | 95 | 200 | 34 | | Spr 2016 | 11 | Science | 30 | 6 | 2.1 | 292 | 100.0 | 99 | 200 | 62 | # **Appendix T: Reading, Mathematics, and Science Demographic Summary Sheets** **Reading:** Grade 3 | | | | Raw S | cores | Scale S | cores | Percent in | n Performa | nce Level | |------------|----------|---------|-------|-------|---------|-------|------------|------------|-----------| | Group | Subgroup | Valid N | Mean | SD | Mean | SD | Below | Meets | Exceeds | | | | | | | | | | | | | Overall | | 262 | 14.4 | 7.3 | 100.2 | 52.9 | 35.5 | 42.4 | 22.1 | | | | | | | | | | | | | Gender | Male | 182 | 14.3 | 7.2 | 100.0 | 51.9 | 37.4 | 41.8 | 20.9 | | | Female | 80 | 14.5 | 7.7 | 100.6 | 55.4 | 31.3 | 43.8 | 25.0 | | | | | | | | | | | | | Ethnicity* | AM | 5 | 14.0 | 8.5 | 95.0 | 57.7 | 20.0 | 60.0 | 20.0 | | | AS | 6 | 10.3 | 5.4 | 71.3 | 35.8 | 50.0 | 50.0 | 0.0 | | | BL | 24 | 15.0 | 6.3 | 101.8 | 42.8 | 29.2 | 54.2 | 16.7 | | | PI | 1 | 12.0 | 1 | 83.0 | - | 100.0 | 0.0 | 0.0 | | | WH | 170 | 14.7 | 7.7 | 103.8 | 56.7 | 35.3 | 36.5 | 28.2 | | | HI | 44 | 13.3 | 6.6 | 90.8 | 43.4 | 40.9 | 52.3 | 6.8 | | | MU | 12 | 14.0 | 7.5 | 97.1 | 54.5 | 25.0 | 58.3 | 16.7 | | | | | | | | | | | | | Special Ed | No | 6 | 18.2 | 5.1 | 125.7 | 36.4 | 16.7 | 50.0 | 33.3 | | | Yes | 256 | 14.3 | 7.4 | 99.6 | 53.1 | 35.9 | 42.2 | 21.9 | | | | | | | | | | | | | ELL | No | 255 | 14.3 | 7.4 | 100.1 | 53.5 | 36.1 | 41.2 | 22.7 | | | Yes | 7 | 15.1 | 3.1 | 101.4 | 18.2 | 14.3 | 85.7 | 0.0 | | | | | | | | | | | | | FLS | No | 126 | 14.3 | 7.4 | 100.4 | 53.8 | 34.1 | 42.1 | 23.8 | | | Yes | 136 | 14.4 | 7.3 | 100.0 | 52.2 | 36.8 | 42.6 | 20.6 | ^{*} AM=American Indian, AS=Asian, BL=African American/Black, PI=Native Hawaiian or other Pacific Islander, WH=White, HI= Hispanic, MU=Multiple Ethnicities #### Nebraska State Accountability Alternate Assessment 2016 Technical Report | C | Cultura | Malial M | Raw S | cores | Scale Scores | | Percent in | n Performa | nce Level | |------------|----------|----------|-------|-------|--------------|------|------------|------------|-----------| | Group | Subgroup | Valid N | Mean | SD | Mean | SD | Below | Meets | Exceeds | | | | | | | | | | | | | Overall | | 275 | 16.3 | 6.9 | 107.3 | 52.4 | 33.5 | 30.9 | 35.6 | | | | | | | | | | | | | Gender | Male | 186 | 16.6 | 6.4 | 108.4 | 48.8 | 32.8 | 33.9 | 33.3 | | | Female | 89 | 15.8 | 8.0 | 104.9 | 59.3 | 34.8 | 24.7 | 40.4 | | | | | | | | | | | | | Ethnicity* | AM | 5 | 20.4 | 4.1 | 140.8 | 41.4 | 0.0 | 40.0 | 60.0 | | | AS | 6 | 14.2 | 5.3 | 88.0 | 35.1 | 66.7 | 16.7 | 16.7 | | | BL | 31 | 14.8 | 6.5 | 93.0 | 43.6 | 41.9 | 35.5 | 22.6 | | | PI | 0 | | | | | | | | | | WH | 171 | 16.3 | 7.1 | 107.7 | 54.7 | 35.1 | 29.2 | 35.7 | | | HI | 51 | 16.5 | 7.1 | 108.0 | 51.5 | 27.5 | 33.3 | 39.2 | | | MU | 11 | 19.4 | 4.7 | 131.6 | 43.7 | 9.1 | 36.4 | 54.5 | | | | | | | | | | | | | Special Ed | No | 2 | 20.0 | 4.2 | 132.5 | 41.7 | 0.0 | 50.0 | 50.0 | | | Yes | 273 | 16.3 | 7.0 | 107.1 | 52.4 | 33.7 | 30.8 | 35.5 | | | | | | | | | | | | | ELL | No | 270 | 16.2 | 7.0 | 106.6 | 52.4 | 34.1 | 30.4 | 35.6 | | | Yes | 5 | 21.0 | 2.9 | 143.2 | 37.5 | 0.0 | 60.0 | 40.0 | | | | | | | | | | | | | FLS | No | 117 | 15.5 | 6.9 | 100.9 | 51.1 | 41.9 | 28.2 | 29.9 | | | Yes | 158 | 16.9 | 7.0 | 112.0 | 52.9 | 27.2 | 32.9 | 39.9 | _ ^{*} AM=American Indian, AS=Asian, BL=African American/Black, PI=Native Hawaiian or other Pacific Islander, WH=White, HI= Hispanic, MU=Multiple Ethnicities #### Nebraska State Accountability Alternate Assessment 2016 Technical Report | C | Cultura | Malial Ar | Raw S | cores | Scale S | cores | Percent in | n Performa | nce Level | |------------|----------|-----------|-------|-------|---------|-------|------------|------------|-----------| | Group | Subgroup | Valid N | Mean | SD | Mean | SD | Below | Meets | Exceeds | | | | | | | | | | | | | Overall | | 314 | 15.4 | 6.3 | 110.4 | 52.5 | 29.9 | 38.2 | 31.8 | | | | | | | | | | | | | Gender | Male | 196 | 15.7 | 6.1 | 113.6 | 51.8 | 27.6 | 37.2 | 35.2 | | | Female | 118 | 14.8 | 6.6 | 105.2 | 53.4 | 33.9 | 39.8 | 26.3 | | | | | | | | | | | | | Ethnicity* | AM | 11 | 15.7 | 6.0 | 111.0 | 53.5 | 27.3 | 45.5 | 27.3 | | | AS | 6 | 15.2 | 8.5 | 110.7 | 65.0 | 33.3 | 16.7 | 50.0 | | | BL | 28 | 15.6 | 6.1 | 111.3 | 48.3 | 25.0 | 39.3 | 35.7 | | | PI | 1 | 14.0 | 14.0 | 94.0 | 94.0 | 0.0 | 100.0 | 0.0 | | | WH | 183 | 15.6 | 6.1 | 112.3 | 51.7 | 29.5 | 37.7 | 32.8 | | | HI | 68 | 14.3 | 7.4 | 102.6 | 59.1 | 38.2 | 32.4 | 29.4 | | | MU | 16 | 17.1 | 3.8 | 122.1 | 36.6 | 12.5 | 62.5 | 25.0 | | | | | 42.2 | | 02.0 | | 22.2 | 50.0 | 467 | | Special Ed | No | 6 | 13.3 | 7.7 | 92.8 | 55.5 | 33.3 | 50.0 | 16.7 | | | Yes | 308 | 15.4 | 6.3 | 110.8 | 52.4 | 29.9 | 38.0 | 32.1 | | ELL | No | 311 | 15.3 | 6.3 | 110.1 | 52.5 | 30.2 | 38.3 | 31.5 | | LLL | Yes | 3 | 20.3 | 2.1 | 150.3 | 23.0 | 33.3 | 66.7 | 100.0 | | | | | | | | | | | | | FLS | No | 123 | 14.6 | 6.4 | 104.0 | 52.4 | 35.0 | 39.8 | 25.2 | | | Yes | 191 | 15.8 | 6.2 | 114.6 | 52.2 | 26.7 | 37.2 | 36.1 | ^{*} AM=American Indian, AS=Asian, BL=African American/Black, PI=Native Hawaiian or other Pacific Islander, WH=White, HI= Hispanic, MU=Multiple Ethnicities | C | College | Malial M | Raw S | cores | Scale S | cores | Percent in | n Performa | nce Level | |------------|----------|----------|-------|-------|---------|-------|------------|------------|-----------| | Group | Subgroup | Valid N | Mean | SD | Mean | SD | Below | Meets | Exceeds | | | | | | | | | | | | | Overall | | 331 | 15.8 | 6.2 | 104.9 | 44.9 | 35.0 | 36.6 | 28.4 | | | | | | | | | | | | | Gender | Male | 220 | 16.0 | 6.0 | 106.2 | 43.7 | 32.3 | 40.5 | 27.3 | | | Female | 111 | 15.3 | 6.6 | 102.5 | 47.4 | 40.5 | 28.8 | 30.6 | | | | | | | | | | | | | Ethnicity* | AM | 11 | 16.3 | 5.6 | 105.5 | 36.1 | 27.3 | 54.5 | 18.2 | | | AS | 4 | 12.5 | 2.4 | 80.8 | 13.4 | 50.0 | 50.0 | 0.0 | | | BL | 32 | 18.9 | 4.1 | 125.1 | 31.4 | 12.5 | 43.8 | 43.8 | | | PI | 0 | | | | | | | | | | WH | 205 | 15.8 | 6.4 | 105.7 | 46.7 | 35.1 | 35.6 | 29.3 | | | HI | 70 | 13.8 | 6.3 | 91.7 | 44.3 | 48.6 | 32.9 | 18.6 | | | MU | 8 | 20.0 | 3.6 | 134.4 | 31.6 | 0.0 | 37.5 | 62.5 | | | | | | | | | | | | | Special Ed | No | 7 | 18.1 | 5.3 | 123.7 | 45.7 | 28.6 | 28.6 | 42.9 | | | Yes | 324 | 15.7 | 6.3 | 104.5 | 44.9 | 35.2 | 36.7 | 28.1 | | | | | | | | | | | | | ELL | No | 327 | 15.8 | 6.2 | 105.0 | 44.9 | 34.9 | 36.7 | 28.4 | | | Yes | 4 | 14.3 | 6.8 | 100.3 | 57.1 | 50.0 | 25.0 | 25.0 | | | | | - | | | | | | | | FLS | No | 144 | 15.2 | 6.2 | 101.2 | 44.6 | 38.9 | 36.8 | 24.3 | | | Yes | 187 | 16.2 | 6.2 | 107.8 | 45.2 | 32.1 | 36.4 | 31.6 | $^{^*}$ AM=American Indian, AS=Asian, BL=African American/Black, PI=Native Hawaiian or other Pacific Islander, WH=White, HI= Hispanic, MU=Multiple Ethnicities | C | Cultura | Malial M | Raw S | cores | Scale S | cores | Percent in Performance Level | | | | |------------|----------|----------|-------|-------|---------|-------|------------------------------|-------|---------|--| | Group | Subgroup | Valid N | Mean | SD | Mean | SD | Below | Meets | Exceeds | | | | | | | | | | | | | | | Overall | | 334 | 15.5 | 6.4 | 109.2 | 52.4 | 36.2 | 32.6 | 31.1 | | | | | | | | | | | | | | | Gender | Male | 220 | 15.2 | 6.2 | 106.3 | 50.9 | 36.8 | 37.3 | 25.9 | | | | Female | 114 | 16.1 | 6.6 | 114.7 | 55.2 | 35.1 | 23.7 | 41.2 | | | | | | | | | | | | | | | Ethnicity* | AM | 4 | 12.3 | 9.8 | 86.0 | 72.3 | 50.0 | 25.0 | 25.0 | | | | AS | 4 | 14.8 | 10.1 | 107.3 | 76.7 | 25.0 | 50.0 | 25.0 | | | | BL | 37 | 14.6 | 5.7 | 100.4 | 46.1 | 40.5 | 37.8 | 21.6 | | | | PI | 0 | | | | | | | | | | | WH | 211 | 15.5 | 6.6 | 109.9 | 54.6 | 36.0 | 31.3 | 32.7 | | | | HI | 65 | 16.2 | 5.9 | 113.8 | 48.7 | 35.4 | 29.2 | 35.4 | | | | MU | 13 | 15.6 | 4.9 | 106.5 | 41.4 | 30.8 | 53.8 | 15.4 | | | | | | | | | | | | | | | Special Ed | No | 3 | 14.0 | 3.6 | 92.0 | 26.9 | 66.7 | 33.3 | 0.0 | | | | Yes | 331 | 15.5 | 6.4 | 109.3 | 52.6 | 36.0 | 32.6 | 31.4 | | | | | | | | | | | | | | | ELL | No | 329 | 15.4 | 6.3 | 108.5 | 52.2 | 36.5 | 33.1 | 30.4 | | | | Yes | 5 | 20.2 | 5.4 | 155.0 | 53.9 | 20.0 | 0.0 | 80.0 | | | | | | | | | | | | | | | FLS | No | 137 | 14.5 | 6.8 | 101.7
 54.7 | 43.8 | 27.7 | 28.5 | | | | Yes | 197 | 16.2 | 5.9 | 114.4 | 50.3 | 31.0 | 36.0 | 33.0 | | $^{^*}$ AM=American Indian, AS=Asian, BL=African American/Black, PI=Native Hawaiian or other Pacific Islander, WH=White, HI= Hispanic, MU=Multiple Ethnicities | C | College | 1/-1:-1 A/ | Raw S | cores | Scale S | cores | Percent in | n Performa | nce Level | |------------|----------|------------|-------|-------|---------|-------|------------|------------|-----------| | Group | Subgroup | Valid N | Mean | SD | Mean | SD | Below | Meets | Exceeds | | | | | | | | | | | | | Overall | | 320 | 15.7 | 5.8 | 113.2 | 42.4 | 25.3 | 42.2 | 32.5 | | | | | | | | | | | | | Gender | Male | 198 | 15.8 | 5.7 | 113.4 | 41.4 | 24.7 | 41.9 | 33.3 | | | Female | 122 | 15.7 | 6.0 | 112.9 | 44.1 | 26.2 | 42.6 | 31.1 | | * | | | 44.0 | 40.4 | 77.0 | 74.0 | 40.0 | 20.0 | 40.0 | | Ethnicity* | AM | 5 | 11.0 | 10.4 | 77.0 | 71.8 | 40.0 | 20.0 | 40.0 | | | AS | 6 | 15.2 | 7.4 | 108.2 | 53.7 | 33.3 | 16.7 | 50.0 | | | BL | 37 | 14.8 | 6.1 | 106.9 | 44.9 | 27.0 | 45.9 | 27.0 | | | PI | 1 | 16.0 | - | 110.0 | - | 0.0 | 100.0 | 0.0 | | | WH | 209 | 16.0 | 5.6 | 114.9 | 40.5 | 23.9 | 44.0 | 32.1 | | | HI | 50 | 16.0 | 5.4 | 116.3 | 40.5 | 24.0 | 44.0 | 32.0 | | | MU | 12 | 15.0 | 8.0 | 108.9 | 55.8 | 41.7 | 8.3 | 50.0 | | Cassial Ed | Na | 4 | 16.5 | 6.1 | 123.8 | 53.5 | 25.0 | 50.0 | 25.0 | | Special Ed | No | 316 | 15.7 | 5.8 | 113.1 | 42.3 | 25.3 | 42.1 | 32.6 | | | Yes | 310 | 13.7 | 3.6 | 113.1 | 42.3 | 23.3 | 42.1 | 32.0 | | ELL | No | 316 | 15.7 | 5.8 | 113.0 | 42.5 | 25.6 | 42.1 | 32.3 | | | Yes | 4 | 18.0 | 4.2 | 126.0 | 28.4 | 0.0 | 50.0 | 50.0 | | FI C | | 150 | 15.4 | Γ 0 | 110.0 | 41.0 | 20.5 | 40.4 | 20.1 | | FLS | No | 156 | 15.4 | 5.8 | 110.8 | 41.0 | 29.5 | 40.4 | 30.1 | | | Yes | 164 | 16.0 | 5.9 | 115.5 | 43.6 | 21.3 | 43.9 | 34.8 | __ $^{^*}$ AM=American Indian, AS=Asian, BL=African American/Black, PI=Native Hawaiian or other Pacific Islander, WH=White, HI= Hispanic, MU=Multiple Ethnicities | C | Code | 17-11-1 A1 | Raw S | cores | Scale Scores | | Percent in Performance Level | | | | |------------|-----------|------------|-------|-------|--------------|------|------------------------------|-------|---------|--| | Group | Subgroup | Valid N | Mean | SD | Mean | SD | Below | Meets | Exceeds | | | | | | | | | | | | | | | Overall | | 293 | 15.8 | 6.8 | 109.5 | 49.5 | 27.3 | 42.7 | 30.0 | | | | | | | | | | | | | | | Gender | Male | 183 | 16.1 | 6.7 | 111.2 | 49.0 | 23.5 | 46.4 | 30.1 | | | | Female | 110 | 15.4 | 7.0 | 106.8 | 50.4 | 33.6 | 36.4 | 30.0 | | | . * | | 10 | | | 100.1 | 22.2 | | | 22.2 | | | Ethnicity* | AM | 12 | 20.0 | 3.4 | 139.4 | 32.3 | 8.3 | 58.3 | 33.3 | | | | AS | 4 | 20.0 | 3.6 | 139.8 | 33.0 | 0.0 | 50.0 | 50.0 | | | | BL | 30 | 15.3 | 5.7 | 104.1 | 39.7 | 23.3 | 60.0 | 16.7 | | | | PI | 1 | 0.0 | - | 1.0 | • | 100.0 | 0.0 | 0.0 | | | | WH | 191 | 15.9 | 6.8 | 110.3 | 49.9 | 28.3 | 37.7 | 34.0 | | | | HI | 48 | 14.7 | 7.6 | 101.5 | 54.2 | 31.3 | 47.9 | 20.8 | | | | MU | 7 | 16.0 | 5.9 | 112.7 | 46.8 | 28.6 | 42.9 | 28.6 | | | Consid Ed | No | 9 | 19.0 | 5.8 | 129.9 | 41.2 | 11.1 | 33.3 | 55.6 | | | Special Ed | No
Yes | 284 | 15.7 | 6.8 | 108.9 | 49.6 | 27.8 | 43.0 | 29.2 | | | | 163 | | | | | | | | | | | ELL | No | 291 | 15.9 | 6.8 | 109.9 | 49.4 | 26.8 | 43.0 | 30.2 | | | | Yes | 2 | 7.5 | 2.1 | 54.5 | 13.4 | 100.0 | 0.0 | 0.0 | | | EL C | NI. | 130 | 14.9 | 7.2 | 103.4 | 51.3 | 33.1 | 40.8 | 26.2 | | | FLS | No | | | | | | | | | | | | Yes | 163 | 16.5 | 6.5 | 114.4 | 47.5 | 22.7 | 44.2 | 33.1 | | __ $^{^*}$ AM=American Indian, AS=Asian, BL=African American/Black, PI=Native Hawaiian or other Pacific Islander, WH=White, HI= Hispanic, MU=Multiple Ethnicities #### **Mathematics** | Current | Subgroup | V-II-I M | Raw S | cores | Scale Scores | | Percent in Performance Level | | | |------------|----------|----------|-------|-------|--------------|------|------------------------------|-------|---------| | Group | Subgroup | Valid N | Mean | SD | Mean | SD | Below | Meets | Exceeds | | | | | | | | | | | | | Overall | | 250 | 14.1 | 7.8 | 98.5 | 56.1 | 36.0 | 37.2 | 26.8 | | | | | | | | | | | | | Gender | Male | 173 | 14.0 | 7.7 | 97.6 | 55.8 | 37.6 | 35.8 | 26.6 | | | Female | 77 | 14.4 | 7.9 | 100.6 | 56.9 | 32.5 | 40.3 | 27.3 | | | | | | | | | | | | | Ethnicity* | AM | 5 | 14.0 | 8.6 | 94.6 | 57.7 | 20.0 | 40.0 | 40.0 | | | AS | 7 | 12.4 | 7.6 | 86.6 | 55.2 | 57.1 | 14.3 | 28.6 | | | BL | 24 | 14.9 | 7.0 | 102.0 | 50.3 | 29.2 | 41.7 | 29.2 | | | PI | 1 | 14.0 | 1 | 94.0 | - | 0.0 | 100.0 | 0.0 | | | WH | 157 | 14.1 | 8.1 | 98.9 | 59.4 | 37.6 | 34.4 | 28.0 | | | HI | 44 | 14.3 | 7.3 | 99.6 | 52.1 | 36.4 | 38.6 | 25.0 | | | MU | 12 | 13.7 | 6.8 | 91.6 | 45.6 | 25.0 | 66.7 | 8.3 | | | | | | | | | | | | | Special Ed | No | 7 | 18.9 | 5.0 | 133.3 | 40.9 | 14.3 | 42.9 | 42.9 | | | Yes | 243 | 14.0 | 7.8 | 97.5 | 56.2 | 36.6 | 37.0 | 26.3 | | | | | | | | | | | | | ELL | No | 243 | 14.0 | 7.8 | 97.9 | 56.6 | 36.6 | 37.0 | 26.3 | | | Yes | 7 | 17.6 | 4.5 | 118.6 | 29.1 | 14.3 | 42.9 | 42.9 | | | | | | | | | | | | | FLS | No | 121 | 14.1 | 7.9 | 98.3 | 56.6 | 35.5 | 37.2 | 27.3 | | | Yes | 129 | 14.2 | 7.7 | 98.8 | 55.7 | 36.4 | 37.2 | 26.4 | ^{*} AM=American Indian, AS=Asian, BL=African American/Black, PI=Native Hawaiian or other Pacific Islander, WH=White, HI= Hispanic, MU=Multiple Ethnicities | Current | Subgroup | V-II-I M | Raw S | cores | Scale S | cores | Percent in Performance Level | | | |------------|----------|----------|-------|-------|---------|-------|------------------------------|-------|---------| | Group | Subgroup | Valid N | Mean | SD | Mean | SD | Below | Meets | Exceeds | | | | | | | | | | | | | Overall | | 262 | 18.5 | 8.5 | 102.1 | 56.6 | 39.7 | 29.0 | 31.3 | | | | | | | | | | | | | Gender | Male | 175 | 19.0 | 8.0 | 104.5 | 54.3 | 40.6 | 26.3 | 33.1 | | | Female | 87 | 17.5 | 9.4 | 97.2 | 61.0 | 37.9 | 34.5 | 27.6 | | | | | | | | | | | | | Ethnicity* | AM | 5 | 25.6 | 5.1 | 155.8 | 46.5 | 20.0 | 0.0 | 80.0 | | | AS | 5 | 17.0 | 6.9 | 82.2 | 43.7 | 20.0 | 80.0 | 0.0 | | | BL | 30 | 17.4 | 8.1 | 91.8 | 49.7 | 46.7 | 30.0 | 23.3 | | | PI | 0 | | | | | | | | | | WH | 163 | 18.4 | 8.6 | 101.3 | 57.9 | 41.7 | 28.8 | 29.4 | | | HI | 48 | 18.5 | 9.1 | 101.8 | 57.2 | 39.6 | 20.8 | 39.6 | | | MU | 11 | 22.3 | 5.5 | 127.6 | 49.4 | 9.1 | 54.5 | 36.4 | | | | | | | | | | | | | Special Ed | No | 2 | 21.0 | 9.9 | 122.5 | 79.9 | 50.0 | 0.0 | 50.0 | | | Yes | 260 | 18.5 | 8.5 | 101.9 | 56.6 | 39.6 | 29.2 | 31.2 | | | | | | | | | | | | | ELL | No | 258 | 18.5 | 8.5 | 101.8 | 56.9 | 39.9 | 28.7 | 31.4 | | | Yes | 4 | 22.3 | 4.3 | 120.3 | 33.6 | 25.0 | 50.0 | 25.0 | | | | | | | | | | | | | FLS | No | 115 | 17.4 | 7.9 | 92.3 | 50.9 | 47.8 | 32.2 | 20.0 | | | Yes | 147 | 19.5 | 8.9 | 109.7 | 59.8 | 33.3 | 26.5 | 40.1 | ^{*} AM=American Indian, AS=Asian, BL=African American/Black, PI=Native Hawaiian or other Pacific Islander, WH=White, HI= Hispanic, MU=Multiple Ethnicities | | Cubanana | 24.12.1.04 | Raw S | cores | Scale S | cores | Percent in Performance Level | | | | |------------|----------|------------|-------|-------|---------|-------|------------------------------|-------|---------|--| | Group | Subgroup | Valid N | Mean | SD | Mean | SD | Below | Meets | Exceeds | | | | | | | | | | | | | | | Overall | | 313 | 18.7 | 7.9 | 112.3 | 54.8 | 32.3 | 32.9 | 34.8 | | | | | | | | | | | | | | | Gender | Male | 195 | 19.5 | 7.8 | 117.8 | 54.8 | 30.8 | 27.7 | 41.5 | | | | Female | 118 | 17.4 | 8.0 | 103.1 | 53.6 | 34.7 | 41.5 | 23.7 | | | | | | | | | | | | | | | Ethnicity* | AM | 11 | 18.1 | 8.7 | 109.2 | 61.6 | 36.4 | 36.4 | 27.3 | | | | AS | 6 | 19.3 | 11.3 | 123.3 | 78.5 | 33.3 | 16.7 | 50.0 | | | | BL | 28 | 18.7 | 7.9 | 112.5 | 53.9 | 28.6 | 35.7 | 35.7 | | | | PI | 1 | 14.0 | - | 77.0 | - | 100.0 | 0.0 | 0.0 | | | | WH | 183 | 18.9 | 7.6 | 113.6 | 52.9 | 30.6 | 35.0 | 34.4 | | | | HI | 67 | 17.7 | 9.1 | 106.2 | 60.0 | 38.8 | 25.4 | 35.8 | | | | MU | 16 | 20.8 | 6.0 | 125.5 | 45.8 | 18.8 | 43.8 | 37.5 | | | | | | 46.2 | 0.0 | 05.0 | 60.5 | 50.0 | 467 | 22.2 | | | Special Ed | No | 6 | 16.2 | 9.9 | 95.0 | 60.5 | 50.0 | 16.7 | 33.3 | | | | Yes | 307 | 18.7 | 7.9 | 112.6 | 54.7 | 31.9 | 33.2 | 34.9 | | | ELL | No | 310 | 18.6 | 7.9 | 111.7 | 54.5 | 32.6 | 32.9 | 34.5 | | | | Yes | 3 | 27.0 | 3.5 | 178.0 | 38.1 | 0.0 | 33.3 | 66.7 | | | | | | | | | | | | | | | FLS | No | 122 | 17.3 | 7.9 | 102.4 | 54.2 | 37.7 | 36.9 | 25.4 | | | | Yes | 191 | 19.6 | 7.9 | 118.6 | 54.3 | 28.8 | 30.4 | 40.8 | | $^{^*}$ AM=American Indian, AS=Asian, BL=African American/Black, PI=Native Hawaiian or other Pacific Islander, WH=White, HI= Hispanic, MU=Multiple Ethnicities | Current | College | Marillan Ar | Raw S | cores | Scale Scores | | Percent in Performance Level | | | | |------------|----------|-------------|-------|-------|--------------|------|------------------------------|-------|---------|--| | Group | Subgroup | Valid N | Mean | SD | Mean | SD | Below | Meets | Exceeds | | | | | | | | | | | | | | | Overall | | 332 | 18.5 | 7.3 | 97.8 | 41.3 | 36.1 | 44.3 | 19.6 | | | | | | | | | | | | | | | Gender | Male | 215 | 18.6 | 7.3 | 98.4 | 41.3 | 35.3 | 43.3 | 21.4 | | | | Female | 117 | 18.3 | 7.4 | 96.7 | 41.3 | 37.6 | 46.2 | 16.2 | | | | | | | | | | | | | | | Ethnicity* | AM | 10 | 18.8 | 5.5 | 96.4 | 26.1 | 30.0 | 60.0 | 10.0 | | | | AS | 4 | 16.5 | 6.4 | 86.3 | 30.6 | 50.0 | 50.0 | 0.0 | | | | BL | 33 | 20.4 | 5.5 | 105.9 | 30.7 | 18.2 | 60.6 | 21.2 | | | | PI | 0 | | | | | | | | | | | WH | 205 | 18.4 | 7.6 | 98.3 | 43.6 | 38.0 | 41.0 | 21.0 | | | | HI | 70 | 17.1 | 7.5 | 89.8 | 40.8 | 42.9 | 42.9 | 14.3 | | | | MU | 9 | 24.0 | 4.2 | 126.8 | 27.0 | 11.1 | 44.4 | 44.4 | | | | | _ | | | | | | | | | | Special Ed | No | 7 | 21.3 | 5.5 | 110.6 | 29.6 | 14.3 | 42.9 | 42.9 | | | | Yes | 325 | 18.4 | 7.4 | 97.5 | 41.5 | 36.6 | 44.3 | 19.1 | | | ELL | No | 328 | 18.5 | 7.3 | 98.0 | 41.3 | 35.7 | 44.8 | 19.5 | | | | Yes | 4 | 14.5 |
8.3 | 77.8 | 41.7 | 75.0 | 25.0 | 0.0 | | | | | | | | | | | | | | | FLS | No | 145 | 17.9 | 7.4 | 94.8 | 42.0 | 40.0 | 44.1 | 15.9 | | | | Yes | 187 | 18.9 | 7.3 | 100.0 | 40.6 | 33.2 | 44.4 | 22.5 | | __ $^{^*}$ AM=American Indian, AS=Asian, BL=African American/Black, PI=Native Hawaiian or other Pacific Islander, WH=White, HI= Hispanic, MU=Multiple Ethnicities | C | Cultura | Malial M | Raw S | cores | Scale S | cores | Percent in Performance Level | | | | |------------|----------|----------|-------|-------|---------|-------|------------------------------|-------|---------|--| | Group | Subgroup | Valid N | Mean | SD | Mean | SD | Below | Meets | Exceeds | | | | | | | | | | | | | | | Overall | | 342 | 18.3 | 7.8 | 103.0 | 50.0 | 39.2 | 33.6 | 27.2 | | | | | | | | | | | | | | | Gender | Male | 222 | 18.0 | 7.8 | 100.6 | 49.5 | 41.9 | 33.8 | 24.3 | | | | Female | 120 | 18.9 | 7.8 | 107.3 | 50.7 | 34.2 | 33.3 | 32.5 | | | | | | | | | | | | | | | Ethnicity* | AM | 5 | 17.0 | 11.7 | 97.6 | 69.9 | 40.0 | 40.0 | 20.0 | | | | AS | 4 | 13.0 | 9.3 | 69.3 | 48.8 | 50.0 | 50.0 | 0.0 | | | | BL | 38 | 17.0 | 6.9 | 92.7 | 41.0 | 50.0 | 31.6 | 18.4 | | | | PI | 0 | | | | | | | | | | | WH | 218 | 18.4 | 8.1 | 104.3 | 52.2 | 38.5 | 33.0 | 28.4 | | | | HI | 66 | 19.1 | 7.4 | 108.2 | 48.3 | 33.3 | 33.3 | 33.3 | | | | MU | 11 | 17.7 | 4.7 | 95.5 | 28.0 | 45.5 | 45.5 | 9.1 | | | | | | | | | | | | | | | Special Ed | No | 3 | 16.7 | 2.3 | 88.0 | 12.1 | 33.3 | 66.7 | 0.0 | | | | Yes | 339 | 18.3 | 7.9 | 103.1 | 50.2 | 39.2 | 33.3 | 27.4 | | | | | | | | | | | | | | | ELL | No | 337 | 18.2 | 7.8 | 102.3 | 49.7 | 39.8 | 33.5 | 26.7 | | | | Yes | 5 | 24.4 | 4.9 | 149.4 | 48.9 | 0.0 | 40.0 | 60.0 | | | | | | | | | | | | | | | FLS | No | 143 | 17.5 | 8.4 | 98.0 | 52.3 | 42.0 | 33.6 | 24.5 | | | | Yes | 199 | 18.9 | 7.4 | 106.5 | 48.0 | 37.2 | 33.7 | 29.1 | | $^{^*}$ AM=American Indian, AS=Asian, BL=African American/Black, PI=Native Hawaiian or other Pacific Islander, WH=White, HI= Hispanic, MU=Multiple Ethnicities | Current | Subgroup | Malial M | Raw S | cores | Scale Scores | | Percent in Performance Level | | | |------------|----------|----------|-------|-------|--------------|------|------------------------------|-------|---------| | Group | Subgroup | Valid N | Mean | SD | Mean | SD | Below | Meets | Exceeds | | | | | | | | | | | | | Overall | | 328 | 19.2 | 7.1 | 99.7 | 50.8 | 42.7 | 28.7 | 28.7 | | | | | | | | | | | | | Gender | Male | 200 | 19.3 | 7.0 | 100.8 | 50.5 | 43.5 | 28.0 | 28.5 | | | Female | 128 | 19.0 | 7.3 | 98.0 | 51.5 | 41.4 | 29.7 | 28.9 | | | | | | | | | | | | | Ethnicity* | AM | 5 | 13.4 | 12.4 | 68.8 | 63.9 | 40.0 | 40.0 | 20.0 | | | AS | 6 | 19.2 | 10.5 | 107.5 | 78.0 | 33.3 | 16.7 | 50.0 | | | BL | 37 | 17.9 | 7.8 | 91.1 | 52.1 | 51.4 | 21.6 | 27.0 | | | PI | 1 | 18.0 | - | 84.0 | - | 100.0 | 0.0 | 0.0 | | | WH | 218 | 19.6 | 6.8 | 102.5 | 50.4 | 41.3 | 29.4 | 29.4 | | | HI | 49 | 18.9 | 6.6 | 95.8 | 46.2 | 42.9 | 34.7 | 22.4 | | | MU | 12 | 19.1 | 8.9 | 101.9 | 58.0 | 41.7 | 16.7 | 41.7 | | | | | | | | | | | | | Special Ed | No | 4 | 19.3 | 7.1 | 104.0 | 66.2 | 50.0 | 25.0 | 25.0 | | | Yes | 324 | 19.2 | 7.2 | 99.6 | 50.8 | 42.6 | 28.7 | 28.7 | | | | | | | | | | | | | ELL | No | 324 | 19.2 | 7.2 | 99.7 | 51.1 | 42.9 | 28.4 | 28.7 | | | Yes | 4 | 20.0 | 4.7 | 98.8 | 31.7 | 25.0 | 50.0 | 25.0 | | | | | | | | | | | | | FLS | No | 164 | 19.2 | 6.9 | 99.5 | 50.1 | 43.9 | 26.8 | 29.3 | | | Yes | 164 | 19.2 | 7.4 | 99.8 | 51.7 | 41.5 | 30.5 | 28.0 | _ ^{*} AM=American Indian, AS=Asian, BL=African American/Black, PI=Native Hawaiian or other Pacific Islander, WH=White, HI= Hispanic, MU=Multiple Ethnicities | C | Cubanana | Malial M | Raw S | cores | Scale Scores | | Percent in Performance Level | | | | |------------|----------|----------|-------|-------|--------------|------|------------------------------|-------|---------|--| | Group | Subgroup | Valid N | Mean | SD | Mean | SD | Below | Meets | Exceeds | | | | | | | | | | | | | | | Overall | | 312 | 19.0 | 8.4 | 104.7 | 65.1 | 39.7 | 21.8 | 38.5 | | | | | | | | | | | | | | | Gender | Male | 193 | 19.6 | 8.4 | 110.5 | 65.3 | 36.3 | 22.8 | 40.9 | | | | Female | 119 | 18.1 | 8.3 | 95.3 | 63.9 | 45.4 | 20.2 | 34.5 | | | | | | | | | | | | | | | Ethnicity* | AM | 12 | 22.7 | 5.5 | 131.0 | 55.7 | 33.3 | 16.7 | 50.0 | | | | AS | 4 | 24.8 | 4.7 | 157.8 | 55.9 | 0.0 | 25.0 | 75.0 | | | | BL | 31 | 18.9 | 6.7 | 96.7 | 54.0 | 35.5 | 35.5 | 29.0 | | | | PI | 1 | 1.0 | - | 1.0 | - | 100.0 | 0.0 | 0.0 | | | | WH | 209 | 19.1 | 8.7 | 106.6 | 68.5 | 40.7 | 17.2 | 42.1 | | | | HI | 48 | 17.7 | 8.6 | 93.8 | 58.0 | 39.6 | 33.3 | 27.1 | | | | MU | 7 | 19.4 | 4.8 | 97.0 | 43.0 | 42.9 | 42.9 | 14.3 | | | | | | | | | | | | | | | Special Ed | No | 9 | 22.1 | 8.9 | 134.7 | 62.8 | 11.1 | 33.3 | 55.6 | | | | Yes | 303 | 19.0 | 8.3 | 103.8 | 65.0 | 40.6 | 21.5 | 38.0 | | | | | | | | | | | | | | | ELL | No | 310 | 19.1 | 8.4 | 105.1 | 65.0 | 39.4 | 21.9 | 38.7 | | | | Yes | 2 | 12.0 | 0.0 | 35.0 | 0.0 | 100.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | FLS | No | 140 | 17.9 | 9.0 | 95.9 | 68.3 | 45.7 | 19.3 | 35.0 | | | | Yes | 172 | 20.0 | 7.7 | 111.8 | 61.6 | 34.9 | 23.8 | 41.3 | | $^{^*}$ AM=American Indian, AS=Asian, BL=African American/Black, PI=Native Hawaiian or other Pacific Islander, WH=White, HI= Hispanic, MU=Multiple Ethnicities ## **Science** | Current | Cubavava | V-II-LA | Raw S | cores | Scale S | cores | Percent in Performance Level | | | | |------------|----------|---------|-------|-------|---------|-------|------------------------------|-------|---------|--| | Group | Subgroup | Valid N | Mean | SD | Mean | SD | Below | Meets | Exceeds | | | | | | | | | | | | | | | Overall | | 309 | 16.0 | 6.7 | 113.0 | 53.6 | 26.9 | 35.3 | 37.9 | | | | | | | | | | | | | | | Gender | Male | 190 | 16.4 | 6.5 | 116.8 | 53.5 | 25.8 | 33.7 | 40.5 | | | | Female | 119 | 15.2 | 6.9 | 106.9 | 53.5 | 28.6 | 37.8 | 33.6 | | | | | | | | | | | | | | | Ethnicity* | AM | 11 | 16.1 | 6.8 | 111.6 | 49.8 | 27.3 | 45.5 | 27.3 | | | | AS | 6 | 14.5 | 8.9 | 104.7 | 69.2 | 50.0 | 16.7 | 33.3 | | | | BL | 28 | 15.9 | 6.7 | 113.4 | 54.4 | 32.1 | 25.0 | 42.9 | | | | PI | 1 | 15.0 | - | 99.0 | - | 0.0 | 100.0 | 0.0 | | | | WH | 179 | 16.4 | 6.3 | 115.9 | 51.9 | 24.0 | 39.1 | 36.9 | | | | HI | 67 | 14.6 | 7.8 | 103.4 | 60.3 | 32.8 | 29.9 | 37.3 | | | | MU | 16 | 17.9 | 4.7 | 126.7 | 41.1 | 18.8 | 25.0 | 56.3 | | | | | | | | | | | | | | | Special Ed | No | 6 | 13.2 | 10.1 | 94.2 | 80.9 | 33.3 | 33.3 | 33.3 | | | | Yes | 303 | 16.0 | 6.6 | 113.4 | 53.1 | 26.7 | 35.3 | 38.0 | | | | | | | | | | | | | | | ELL | No | 306 | 15.9 | 6.7 | 112.9 | 53.8 | 27.1 | 35.3 | 37.6 | | | | Yes | 3 | 18.3 | 2.9 | 125.0 | 22.5 | 0.0 | 33.3 | 66.7 | | | | | | | | | | | | | | | FLS | No | 121 | 14.8 | 6.7 | 102.4 | 52.3 | 30.6 | 40.5 | 28.9 | | | | Yes | 188 | 16.7 | 6.6 | 119.8 | 53.5 | 24.5 | 31.9 | 43.6 | | ^{*} AM=American Indian, AS=Asian, BL=African American/Black, PI=Native Hawaiian or other Pacific Islander, WH=White, HI= Hispanic, MU=Multiple Ethnicities | Current | Code | V-II-I M | Raw S | cores | Scale Scores | | Percent in Performance Level | | | |------------|----------|----------|-------|-------|--------------|------|------------------------------|-------|---------| | Group | Subgroup | Valid N | Mean | SD | Mean | SD | Below | Meets | Exceeds | | | | | | | | | | | | | Overall | | 316 | 16.2 | 5.9 | 105.3 | 49.4 | 35.4 | 36.1 | 28.5 | | | | | | | | | | | | | Gender | Male | 194 | 16.4 | 5.8 | 107.1 | 48.3 | 33.0 | 39.2 | 27.8 | | | Female | 122 | 15.8 | 6.1 | 102.4 | 51.2 | 39.3 | 31.1 | 29.5 | | | | | | | | | | | | | Ethnicity* | AM | 5 | 10.6 | 9.7 | 65.8 | 59.8 | 40.0 | 60.0 | 0.0 | | | AS | 6 | 14.8 | 7.8 | 92.5 | 61.1 | 33.3 | 33.3 | 33.3 | | | BL | 37 | 15.2 | 6.0 | 96.3 | 46.3 | 43.2 | 40.5 | 16.2 | | | PI | 1 | 17.0 | - | 103.0 | ı | 0.0 | 100.0 | 0.0 | | | WH | 206 | 16.5 | 5.8 | 107.9 | 49.7 | 35.4 | 33.0 | 31.6 | | | HI | 49 | 16.4 | 5.4 | 106.5 | 46.6 | 30.6 | 40.8 | 28.6 | | | MU | 12 | 16.2 | 7.1 | 106.4 | 56.0 | 33.3 | 41.7 | 25.0 | | | | | | | | | | | | | Special Ed | No | 4 | 16.5 | 5.3 | 105.0 | 44.2 | 50.0 | 25.0 | 25.0 | | | Yes | 312 | 16.2 | 5.9 | 105.3 | 49.5 | 35.3 | 36.2 | 28.5 | | | | | | | | | | | | | ELL | No | 312 | 16.2 | 5.9 | 105.2 | 49.5 | 35.3 | 36.5 | 28.2 | | | Yes | 4 | 16.8 | 5.6 | 107.8 | 46.6 | 0.0 | 50.0 | 50.0 | | | | | | | | | | | | | FLS | No | 156 | 16.0 | 5.9 | 103.8 | 50.1 | 35.9 | 37.8 | 26.3 | | | Yes | 160 | 16.4 | 5.9 | 106.7 | 48.8 | 35.0 | 34.4 | 30.6 | $^{^*}$ AM=American Indian, AS=Asian, BL=African American/Black, PI=Native Hawaiian or other Pacific Islander, WH=White, HI= Hispanic, MU=Multiple Ethnicities | Current | Cubavava | Malial M | Raw S | cores | Scale S | cores | Percent in Performance Level | | | |------------|----------|----------|-------|-------|---------|-------|------------------------------|-------|---------| | Group | Subgroup | Valid N | Mean | SD | Mean | SD | Below | Meets | Exceeds | | | | | | | | | | | | | Overall | | 293 | 19.1 | 8.4 | 108.2 | 54.0 | 31.4 | 34.1 | 34.5 | | | | | | | | | | | | | Gender | Male | 183 | 19.6 | 8.5 | 112.2 | 54.8 | 27.9 | 32.8 | 39.3 | | | Female | 110 | 18.2 | 8.2 | 101.7 | 52.2 | 37.3 | 36.4 | 26.4 | | | | | | | | | | | | | Ethnicity* | AM | 12 | 22.3 | 5.7 | 131.2 | 48.2 | 25.0 | 41.7 | 33.3 | | | AS | 4 | 24.3 | 1.3 | 133.8 | 10.7 | 75.0 | 25.0 | 100.0 | | | BL | 30 | 19.0 | 6.1 | 102.5 | 34.3 | 33.3 | 50.0 | 16.7 | | | PI | 1 | 5.0 | - | 16.0 | - | 100.0 | 0.0 | 0.0 | | | WH | 193 | 19.3 | 8.7 | 110.6 | 56.6 | 30.6 | 28.5 | 40.9 | | | HI | 46 | 16.9 | 9.1 | 94.9 | 56.3 | 39.1 | 39.1 | 21.7 | | | MU | 7 | 21.1 | 4.6 | 114.4 | 27.6 | 14.3 | 57.1 | 28.6 | | | | | | | | | | | | | Special Ed | No | 9 | 23.3 | 9.2 | 142.7 | 62.9 | 11.1 | 22.2 | 66.7 | | | Yes | 284 | 19.0 | 8.3 | 107.1 | 53.4 | 32.0 | 34.5 | 33.5 | | | | | | | | | | | | | ELL | No | 291 | 19.1 | 8.4 | 108.4 | 54.1 | 30.9 | 34.4 | 34.7 | | | Yes | 2 | 14.5
 2.1 | 76.0 | 11.3 | 100.0 | 0.0 | 0.0 | | | | | | | | | | | | | FLS | No | 130 | 17.7 | 8.7 | 99.6 | 54.7 | 37.7 | 33.8 | 28.5 | | | Yes | 163 | 20.2 | 8.0 | 115.1 | 52.6 | 26.4 | 34.4 | 39.3 | $^{^*}$ AM=American Indian, AS=Asian, BL=African American/Black, PI=Native Hawaiian or other Pacific Islander, WH=White, HI= Hispanic, MU=Multiple Ethnicities # Appendix U: Reading, Mathematics, and Science Strand Reliability and SEM *L=Total Number of Items per Strand, Reliability=Coefficient Alpha, SEM= Standard Error of Measurement in raw score metric | Content | Code | Strand | |----------------|------|--| | Reading | R.1 | Vocabulary | | Reading | R.2 | Comprehension | | | M.1 | Number Sense | | Mathematics | M.2 | Geometric/Measurement | | iviatilematics | M.3 | Algebraic | | | M.4 | Data Analysis/Probability | | | S.1 | Inquiry, the Nature of Science, and Technology | | Caiamaa | S.2 | Physical Science | | Science | S.3 | Life Science | | | S.4 | Earth and Space Science | #### **Grade 3:** | Grade 3 | L | Reliability | SEM | |---------|----|-------------|------| | R.1 | 7 | 0.87 | 0.88 | | R.2 | 18 | 0.90 | 1.72 | | M.1 | 10 | 0.86 | 1.20 | | M.2 | 6 | 0.84 | 0.85 | | M.3 | 5 | 0.78 | 0.85 | | M.4 | 4 | 0.76 | 0.74 | Grade 4: | Grade 4 | L | Reliability | SEM | |---------|----|-------------|------| | R.1 | 7 | 0.84 | 0.88 | | R.2 | 18 | 0.89 | 1.69 | | M.1 | 14 | 0.88 | 1.47 | | M.2 | 8 | 0.84 | 1.00 | | M.3 | 5 | 0.66 | 0.92 | | M.4 | 3 | 0.58 | 0.69 | **Grade 5:** | Grade 5 | L | Reliability | SEM | |---------|----|-------------|------| | R.1 | 9 | 0.78 | 1.20 | | R.2 | 16 | 0.84 | 1.63 | | M.1 | 14 | 0.87 | 1.47 | | M.2 | 6 | 0.79 | 0.85 | | M.3 | 5 | 0.60 | 0.96 | | M.4 | 5 | 0.67 | 0.88 | | S.1 | 4 | 0.57 | 0.82 | | S.2 | 7 | 0.80 | 1.00 | | S.3 | 7 | 0.71 | 1.07 | | S.4 | 7 | 0.77 | 0.98 | # **Grade 6:** | Grade 6 | L | Reliability | SEM | |---------|----|-------------|------| | R.1 | 9 | 0.76 | 1.22 | | R.2 | 16 | 0.85 | 1.61 | | M.1 | 10 | 0.75 | 1.34 | | M.2 | 6 | 0.67 | 0.97 | | M.3 | 10 | 0.77 | 1.33 | | M.4 | 4 | 0.62 | 0.76 | ## **Grade 7:** | Grade 7 | L | Reliability | SEM | |---------|----|-------------|------| | R.1 | 9 | 0.79 | 1.16 | | R.2 | 16 | 0.86 | 1.64 | | M.1 | 9 | 0.78 | 1.21 | | M.2 | 6 | 0.76 | 0.94 | | M.3 | 9 | 0.78 | 1.24 | | M.4 | 6 | 0.70 | 0.97 | **Grade 8:** | Grade 8 | L | Reliability | SEM | |---------|----|-------------|------| | R.1 | 9 | 0.77 | 1.23 | | R.2 | 16 | 0.82 | 1.61 | | M.1 | 11 | 0.74 | 1.38 | | M.2 | 8 | 0.75 | 1.08 | | M.3 | 5 | 0.63 | 0.93 | | M.4 | 6 | 0.74 | 0.96 | | S.1 | 4 | 0.51 | 0.82 | | S.2 | 6 | 0.71 | 0.98 | | S.3 | 8 | 0.74 | 1.15 | | S.4 | 7 | 0.57 | 1.14 | # Grade 11: | Grade 11 | L | Reliability | SEM | |----------|----|-------------|------| | R.1 | 8 | 0.78 | 1.09 | | R.2 | 17 | 0.88 | 1.64 | | M.1 | 5 | 0.71 | 0.90 | | M.2 | 12 | 0.88 | 1.27 | | M.3 | 7 | 0.84 | 0.90 | | M.4 | 6 | 0.63 | 1.07 | | S.1 | 4 | 0.68 | 0.79 | | S.2 | 10 | 0.84 | 1.18 | | S.3 | 7 | 0.87 | 0.84 | | S.4 | 9 | 0.74 | 1.28 |