Resources:

ABOUT TEACHING MATHEMATICS A K-8 Resource, by Marilyn Burns
Website: www.mathsolutions.com

Elementary School Mathematics: WHAT PARENTS SHOULD KNOW ABOUT ESTIMATION and PROBLEM SOLVING (Second Editions), by Barbara J. Reys

FAMILY MATH, by Jean Kerr Stenmark, Virginia Thompson, and Ruth Cossey
Website: http://www.lawrencehallofscience.org/equals/

MATH CURSE, by Jon Scieszka and Lane Smith

G is for Googol – A Math Alphabet Book, by David M. Schwartz

MATHEMATICS PENTATHLON
Website: http://www.mathpentath.org/

24 GAME
www.24game.com

Manipulatives & Activities That Help … children learn MATH
Presented by Deb Romanek, Director, Mathematics Education
Nebraska Department of Education
301 Centennial Mall So, Lincoln, NE 68509-4987
402-471-2503 or deb.romanek@nebraska.gov

NDE Math Website: http://www.education.ne.gov/math/index.html
WHAT IS FAMILY MATH?

It’s NOT a teacher standing in front and *Lecturing.*

It’s doing activities and playing games.

It’s parents and kids doing and learning math together.

It’s using beans and buttons and pennies to solve math problems.

It’s organizing information in new ways.

It’s working and talking with others.

It’s finding out that calculators can free our minds for solving harder problems.

It’s sorting things and learning about logic.

It’s finding that **math** is a **TREASURE** we all can share!

It’s estimating and developing number sense.

It’s exploring shapes and geometry.
SAMPLE FAMILY MATH

SESSION I

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
<th>Reference Page In Family Math</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:00 p.m.</td>
<td>Name Tags – Write Your Own</td>
<td>284</td>
</tr>
<tr>
<td></td>
<td>Sign In Sheets (Venn Diagram)</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>Estimation Contest</td>
<td></td>
</tr>
<tr>
<td>7:10 p.m.</td>
<td>Welcome & Introduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Opener – Value of Words</td>
<td>33</td>
</tr>
<tr>
<td>7:20 p.m.</td>
<td>Double Digit</td>
<td>111</td>
</tr>
<tr>
<td>8:00 p.m.</td>
<td>Cookie Break</td>
<td></td>
</tr>
<tr>
<td>8:10 p.m.</td>
<td>Create a Puzzle</td>
<td>187</td>
</tr>
<tr>
<td></td>
<td>Useful Math Skills</td>
<td>271-273</td>
</tr>
<tr>
<td>8:20 p.m.</td>
<td>Evaluation</td>
<td></td>
</tr>
<tr>
<td>8:30 p.m.</td>
<td>Closure</td>
<td></td>
</tr>
</tbody>
</table>
Value of Words

How much is your name worth?

<table>
<thead>
<tr>
<th>Letter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2 ¢</td>
</tr>
<tr>
<td>B</td>
<td>4 ¢</td>
</tr>
<tr>
<td>C</td>
<td>6 ¢</td>
</tr>
<tr>
<td>D</td>
<td>8 ¢</td>
</tr>
<tr>
<td>E</td>
<td>10 ¢</td>
</tr>
<tr>
<td>F</td>
<td>12 ¢</td>
</tr>
<tr>
<td>G</td>
<td>14 ¢</td>
</tr>
<tr>
<td>H</td>
<td>16 ¢</td>
</tr>
<tr>
<td>I</td>
<td>18 ¢</td>
</tr>
<tr>
<td>J</td>
<td>20 ¢</td>
</tr>
<tr>
<td>K</td>
<td>22 ¢</td>
</tr>
<tr>
<td>L</td>
<td>24 ¢</td>
</tr>
<tr>
<td>M</td>
<td>26 ¢</td>
</tr>
<tr>
<td>N</td>
<td>1 ¢</td>
</tr>
<tr>
<td>O</td>
<td>3 ¢</td>
</tr>
<tr>
<td>P</td>
<td>5 ¢</td>
</tr>
<tr>
<td>Q</td>
<td>7 ¢</td>
</tr>
<tr>
<td>R</td>
<td>9 ¢</td>
</tr>
<tr>
<td>S</td>
<td>11 ¢</td>
</tr>
<tr>
<td>T</td>
<td>13 ¢</td>
</tr>
<tr>
<td>U</td>
<td>15 ¢</td>
</tr>
<tr>
<td>V</td>
<td>17 ¢</td>
</tr>
<tr>
<td>W</td>
<td>19 ¢</td>
</tr>
<tr>
<td>X</td>
<td>21 ¢</td>
</tr>
<tr>
<td>Y</td>
<td>23 ¢</td>
</tr>
<tr>
<td>Z</td>
<td>25 ¢</td>
</tr>
</tbody>
</table>

PLEASE - Calculate the value of your **first name** using this pattern.

How much is your friend’s name worth?

Find a name with a value more than yours.

Find a name with a value less than yours.

In your class, whose name do you think is worth the most?

Can you find a word worth exactly $1.00?
Double Digit

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

Double Digit

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>
Double Digit

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

Double Digit

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>
Ranking Sheet

Rank the 10 math skills according to how many people in the following occupations said they used the skill. Place number 1 by the math skill used most often, number 2 by the skill used second most frequently, and so on through number 10, which is the math skill used the least.

<table>
<thead>
<tr>
<th>Use Of</th>
<th>Your Answer</th>
<th>Actual Answer</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fractions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic geometric concepts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calculators</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formulas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decimals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Averaging</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ratio and proportion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per cent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statistical graphs</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Occupations

- Accountant
- Accounting systems Analyst
- Administrator: Shopping Mall
- Advertising Agent
- Airline Passenger Service Agent
- Airplane Mechanic
- Airplane Pilot
- Air Traffic Controller
- Appraiser (Land)
- Architect
- Artist (Graphic)
- Attorney
- Auditor
- Auto Mechanic
- Bank Teller
- Biologist (Environmental)
- Carpenter
- Carpet Cleaner
- Cartographer
- Chiropractor
- Computer Programmer
- Computer Systems Engineer
- Contractor (General)
- Controller (Hospital)
- Counter Clerk (Building Materials)
- Data Processor
- Dentist
- Dietician
- Doctor (G.P.)
- Drafter
- Economist
- Electrician
- Electrical Engineer
- Electronics Technician
- (Civil) Engineer
- (Electronics) Engineer
- (Industrial) Engineer
- (Petroleum) Engineer
- Environmental Analyst
- Farm Advisor
- Fire Prevention Officer
- Fire Fighter
- Forestry Land Manager
- Forestry Recreation Manager
- Geologist (Environmental)
- Highway Patrol Officer
- Income Tax Preparer
- Insurance Agent
- Insurance Claims Supervisor
- Interior Decorator
- Investment Counselor
- Landscape Architect
- Librarian
- Machinist
- Manager: Appliance Store
- Manager: Temp. Employment Service
- Marketing Rep. (Computers)
- Masonry Contractor
- Medical Lab Technician
- Meteorologist
- Motorcycle Sales and Repair
- Navigator
- Newspaper: Circulation
- Newspaper: Production
- Newspaper: Reporter
- Nurse
- Oceanographer (Biological)
- Optician
- Orthopedic Surgeon
- Painting Contractor
- Payroll Supervisor
- Personnel Administrator
- Pharmacist
- Photographer
- Physical Therapist
- Plumber
- Police Officer
- Political Campaign Manager
- Printer
- Psychologist (Experimental)
- Publishing: Order Manager
- Publishing: Production Manager
- Purchasing Agent
- Radio Technician
- Real Estate Agent
- Roofer
- Savings Counselor
- Sheet Metal/Heating Specialist
- Social Worker
- Stock Broker
- Surveyor
- Technical Researcher
- Title Insurance Officer
- Travel Agent
- T.V. Repair Technician
- Urban Planner
- Veterinarian
- Waitress/Waiter
- Wastewater Treatment Operator
Rank the 10 math skills according to how many people in the following occupations said they used the skill. Place number 1 by the math skill used most often, number 2 by the skill used second most frequently, and so on through number 10, which is the math skill used the least.

Occupations

<table>
<thead>
<tr>
<th>Accountant</th>
<th>Electronics Technician</th>
<th>Nurse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounting systems Analyst</td>
<td>(Civil) Engineer</td>
<td>Oceanographer (Biological)</td>
</tr>
<tr>
<td>Administrator: Shopping Mall</td>
<td>(Electronics) Engineer</td>
<td>Optician</td>
</tr>
<tr>
<td>Advertising Agent</td>
<td>(Industrial) Engineer</td>
<td>Orthopedic Surgeon</td>
</tr>
<tr>
<td>Airline Passenger Service Agent</td>
<td>(Petroleum) Engineer</td>
<td>Painting Contractor</td>
</tr>
<tr>
<td>Airplane Mechanic</td>
<td>Environmental Analyst</td>
<td>Payroll Supervisor</td>
</tr>
<tr>
<td>Airplane Pilot</td>
<td>Farm Advisor</td>
<td>Personnel Administrator</td>
</tr>
<tr>
<td>Air Traffic Controller</td>
<td>Fire Prevention Officer</td>
<td>Pharmacist</td>
</tr>
<tr>
<td>Appraiser (Land)</td>
<td>Fire Fighter</td>
<td>Photographer</td>
</tr>
<tr>
<td>Architect</td>
<td>Forestry Land Manager</td>
<td>Physical Therapist</td>
</tr>
<tr>
<td>Artist (Graphic)</td>
<td>Forestry Recreation Manager</td>
<td>Plumber</td>
</tr>
<tr>
<td>Attorney</td>
<td>Geologist (Environmental)</td>
<td>Police Officer</td>
</tr>
<tr>
<td>Auditor</td>
<td>Highway Patrol Officer</td>
<td>Political Campaign Manager</td>
</tr>
<tr>
<td>Auto Mechanic</td>
<td>Hydrologist</td>
<td>Printer</td>
</tr>
<tr>
<td>Bank Teller</td>
<td>Income Tax Preparer</td>
<td>Psychologist (Experimental)</td>
</tr>
<tr>
<td>Biologist (Environmental)</td>
<td>Insurance Agent</td>
<td>Publishing: Order Manager</td>
</tr>
<tr>
<td>Carpenter</td>
<td>Insurance Claims Supervisor</td>
<td>Publishing: Production Manager</td>
</tr>
<tr>
<td>Carpet Cleaner</td>
<td>Interior Decorator</td>
<td>Purchasing Agent</td>
</tr>
<tr>
<td>Cartographer</td>
<td>Investment Counselor</td>
<td>Radio Technician</td>
</tr>
<tr>
<td>Chiropractor</td>
<td>Landscape Architect</td>
<td>Real Estate Agent</td>
</tr>
<tr>
<td>Computer Programmer</td>
<td>Librarian</td>
<td>Roofer</td>
</tr>
<tr>
<td>Computer Systems Engineer</td>
<td>Machinist</td>
<td>Savings Counselor</td>
</tr>
<tr>
<td>Contractor (General)</td>
<td>Manager: Appliance Store</td>
<td>Sheet Metal/Heating Specialist</td>
</tr>
<tr>
<td>Controller (Hospital)</td>
<td>Manager: Temp. Employment Service</td>
<td>Social Worker</td>
</tr>
<tr>
<td>Counter Clerk (Building Materials)</td>
<td>Marketing Rep. (Computers)</td>
<td>Stock Broker</td>
</tr>
<tr>
<td>Data Processor</td>
<td>Masonry Contractor</td>
<td>Surveyor</td>
</tr>
<tr>
<td>Dentist</td>
<td>Medical Lab Technician</td>
<td>Technical Researcher</td>
</tr>
<tr>
<td>Dietician</td>
<td>Meteorologist</td>
<td>Title Insurance Officer</td>
</tr>
<tr>
<td>Doctor (G.P.)</td>
<td>Motorcycle Sales and Repair</td>
<td>Travel Agent</td>
</tr>
<tr>
<td>Drafter</td>
<td>Navigator</td>
<td>T.V. Repair Technician</td>
</tr>
<tr>
<td>Economist</td>
<td>Newspaper: Circulation</td>
<td>Urban Planner</td>
</tr>
<tr>
<td>Electrician</td>
<td>Newspaper: Production</td>
<td>Veterinarian</td>
</tr>
<tr>
<td>Electrical Engineer</td>
<td>Newspaper: Reporter</td>
<td>Waitress/Waiter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wastewater Treatment Operator</td>
</tr>
</tbody>
</table>
Does math make good homework?

Sure! Here’s how to make it work for you!

Marilyn Burns
INSTRUCTOR, September 1986
For both students and teachers, math homework can become drudgery—pages of assignments with no direct tie to a child’s world, no appeal to discovery and imagination.

Is there a better way? Can math make the sort of homework parents’ respect, kids enjoy, and you savor? The answer is an emphatic yes.

Is your class studying measurement?
Ask kids to measure all family members’ feet and bring back their findings. Are you working on division? Suggest that students figure out how many towels—or forks, or pillows—their families have per head.

As you develop homework strategies for the year ahead, remember that the math assignments children bring home communicate strongly with parents about your goals. When you assign work that promotes problem-solving and involves a wide range of activities, you give parents the message that their children’s thinking and reasoning abilities are being addressed. Problem-solving activities also offer experiences that parents themselves find interesting as they help with their children’s math learning.

Early in the year, send parents a set of suggestions for helping kids with math homework. Here’s some of the advice offered to parents in a new book, Family Math (see box):

1. Let your child know that you believe he or she can succeed.
2. Be ready to talk with your child about mathematics, and listen to what he or she says. Ask your child to explain the meaning of each part of a problem.
3. Be more concerned with the processes of doing mathematics than getting a correct answer. The answer to a particular problem has little importance, but knowing how to find answers is a lifetime skill.
4. Try not to tell your child how to solve the problem. It’s better to ask questions and help your child find his or her own methods of working it through.
5. Practice estimation with your child whenever possible. Estimation helps the thinking about a problem that precedes the doing, and it helps kids answers make sense.
6. Provide a special place for study. Allow your child to help gear the place to his or her learning style.
7. Encourage group study, especially as your children grow older.
8. Expect that homework will be done, and look at completed homework regularly, but keep your comments positive. Praise your child for asking questions about the work.
9. Try not to drill your child on math content or create hostilities by insisting that math work be done at any one specific time or in a specific way.
10. Don’t expect that all homework will be easy for your child or be disappointed that it seems difficult.
11. Let your child see you enjoying mathematics. Include recreational mathematics in your family routine. Try to introduce math ideas (with a light touch!) at the dinner table, while traveling, or while at the grocery store.

Suggest that parents of younger children help with “how many” counting activities—household searches for the number of doors, doorknobs, TVs, radios, chairs, beds, and so on. Or send young students home with a paper showing two blank clock faces and instructions to work with parents to draw in the times when the child usually goes to bed and gets up. The idea is to involve the child in his or her environment and enlist parent support in a way that conveys the intrinsically interesting qualities of math.

Ask children to interview their parents to find out when they actually use arithmetic in their daily lives. Parents may mention check-book balancing, grocery shopping, cooking, figuring discounts, restaurant tipping, and calculating gas mileage. Next, students and parents sort the situations they’ve listed three different ways. First they sort the situations as to when they occur—at work, at home, or at play. This helps students see that arithmetic skills are needed in a variety of ways. Second, parents indicate for each entry whether they generally do that arithmetic mentally, with a calculator, or by using paper and pencil. This helps kids see the need to learn their basic facts and to learn to calculate is needed—such as for a checkbook, or whether an estimate will do—such as for tipping at a restaurant. This shows the importance of knowing how and when to estimate.

Here are more homework ideas to broaden kids’ understanding and prepare them for future learning:

Geometry Assign students the task of looking for geometric shapes at home. They investigate floors, wall-papered walls, fabric designs, tabletops, doors, mirrors, to find shapes, sizes, symmetry, congruence, and similarity. Kids make a list and illustrate it to show what they find. Or ask students to search their homes for as many examples as possible of one shape.

Measurement Ask kids to find out whether measurements are standard in their homes. Are doorknobs all the same distance from the floor? Are the seats of the chairs the same height? Are kitchen tabletops the same length? Bathroom sinks the same depth? Doors a standard height?

Average/Predictions and Probability Ask students to figure how many times, on the average, their home telephone rings after school. How many hours after dinner is the TV usually on? How many minutes in a half-hour TV shows are usually devoted to commercials? About how many different commercials are included in a half-hour show?

Students can collect statistical information over a period of days to investigate questions such as these. Ask them to chart findings, figure averages, or make predictions for other days and times.

Problems with money Assign students the task of finding as many ways as they can to make change for a dollar bill. Younger children can be asked to find ways to make change for a quarter or half dollar. Older students can find how to use 100 coins to make $5 without using any nickels.

Ask the students to try to find words that are as close in value to a dollar as they can get. (Wednesday is worth exactly a $1, and so are quarter, elephants, thirty, mittens and writing. More than 500 words in the English language are worth exactly $1.)
Teaching math games Suggest that students teach their parents games they learn in school so kids can get help with strategies. For example, the game of Nim is easy to play, yet challenging to analyze, and provides the opportunity to develop logical thinking. A collection of objects is needed—13 to start with. Two players take turns, each removing one or two objects each turn. Whoever gets stuck having to take the last object loses. Another game is suggested in “Target addition” on page 94.

Back in the classroom There is less motivation for a child to put a great deal of effort into an assignment that won’t be collected, corrected, and returned until several days later. By the time the assignment is returned, the student’s involvement is drastically reduced and the teaching moment has been lost.

Students receive more immediate feedback when they review the assignments cooperatively in small groups. For example, when practice pages of skills have been assigned, students compare answers, discuss difference, and turn in one joint assignment that each signs. While the groups are getting started, check in their heads. Third, the list should be sorted by whether an accurate answer that students have completed the assignment and assist groups with difference they cannot reconcile.

Students who did not do the assignment learn some of what they missed from the group discussion. You can also get more out of math homework by using it for further exploration. Say the students’ homework required them to write a word problem for each of five practice exercises. When small groups are reviewing homework the next day, ask each child to read his or her best problem aloud so others in their group can try to figure out which exercise fits the situation. Or say students were assigned to look for ways to make change for $1. The next day, ask kids in small groups to compare and discuss how they can be sure when they’ve found all possible ways.

If you’ve directed students to measure the diameter and circumference of three circular objects at home, then you can discuss their findings the next as your class investigates the relationship between diameter and circumference.

If you’ve asked younger children to count the number of chairs at home or draw in their bedtimes on blank clock faces, you can compare their answers in a lesson on ordering the next day. Finally, it’s a good idea to check with students, once in a while, to find out how much time a math homework assignment took, what they feel they learned, what they enjoyed and didn’t enjoy, what reactions they received from their families. It is from discussions such as these that students get a sense that they have an active role in play in their own learning.

Marilyn Burns is the creator of The Math Solution in-service courses for teachers. She is also the author of the The I Hate Mathematics! Book (1975) and Math for Smarty Pants (1982), both published by Little, Brown.
HOW TO PLAY: Object of the game is to make 24.

You can add, subtract, multiply and divide. Use all four numbers on a card, but use each number only once. There is at least one solution to every card.

www.24game.com

½ 6 3 1

1 5 10 .5

9 3 2 -6

8 -5 -2 -6

24 8 2 6

10 6 2 11

2 4 3 1 Example: 4 x 3 = 12 12 x 2 = 24 24/1 = 24

2 3 4 4
Answers to Parents’—and Teachers’—Questions About Calculators

By James J. Landheer, coordinator of mathematics curriculum and instruction, East Hartford (Conn.) Public Schools

Under attack because your first graders use calculators? Here are my responses to the 10 questions I’m most frequently asked by teachers and parents about calculators.

1. **At what age should children/students begin using calculators?**
 The earlier, the better. Preschoolers enjoy pushing the buttons and watching the numbers appear. A child’s natural curiosity will lead to exploring number recognition, counting, and concepts of larger and smaller. Formal instruction can start in kindergarten.

2. **What type of calculator should my child/student use?**
 Purchasing a calculator is much like buying a bicycle. A child starts with a tricycle, moves on to a small two-wheeler with training wheels, then up to a 10-speed racer. In other words, calculators change as a child grows—depending on physical and cognitive needs, interest, and finances.

3. **If my child/students use calculators, will they ever learn their basic facts?**
 No normal student should require a machine to do mental arithmetic. However, studies have shown that using calculators enhances young children’s ability to learn basic facts.

4. **I’ve gotten along fine without calculators. Why should my child/students need them?**
 In one word: progress. Progress has allowed the tractor to replace horse-drawn plow, electricity to replace oil lamps, and calculators to replace tedious paper and pencil computations. “Shopkeeper arithmetic” is no longer practical as the sole basis of math instruction. We must prepare students for their future, not our past.

5. **How much instruction do children need to use a calculator?**
 The more complicated calculators require more instruction. If students use calculators only minimally, they miss opportunities for greater problem solving, better applications, and more involvement in how mathematics is done in the real world.

6. **Why should students use calculators in class and not be allowed to use them on tests?**
 More tests are allowing students to use calculators to solve problems. Some states now use calculators as part of their standardized testing and more will move to that in the near future.

7. **Will using calculators decrease students’ computational speed?**
 Students need to learn how to determine which type of computation—estimation, mental arithmetic, paper and pencil computation, or calculator use—is appropriate to solving a problem. It takes longer to write down 450 + 530 then compute the sum, than it does to add the two numbers in your head. Likewise, it would make sense to multiply 4,326 by 674 on a calculator instead of using paper and pencil.

8. **Do calculators artificially enhance students’ mathematical power?**
 Calculators eliminate tedious computation and allow greater involvement in the learning process. First graders understand that addition allows them to find the cost of two shopping items, but their number facts are restricted to sums less than 10. The calculator allows them to explore the same concept with greater numbers than they are able to compute on their own. Likewise, in the past many trigonometric function problems revolved around standard angle measure measurements of 30, 45, 60, and 90 degrees. Calculators allow for the full realm of everyday problems.

9. **Does a school/district need a policy concerning calculators?**
 All teachers, not just those who teach math, must understand that calculators are tools to use to solve problems and should, as any other tool, be used throughout the school. In math, they should be included in the curriculum. In other disciplines, calculators should be used as the need arises.

10. **How should calculators be used in the classroom?**
 Calculators are instructional and problem solving tools. Teachers can use calculators with overhead projection devices. There should be a calculator for each student. If instruction on a particular topic includes calculators, then evaluating student learning should also include calculators. Calculator use must be incorporated into all phases of student activity.
Mathematics-Based Literature Guide

The books in this guide were recommended by Everyday Mathematics teachers who have used them to enrich their students' mathematics experience. They are intended primarily for grades K-3. This list is by no means comprehensive.

Special thanks to teachers Sharon Draznin (second grade, Washington School, Evanston, IL), Claire Hiller (first grade, Orrington School, Evanston, IL), Beth Storey (kindergarten, Northside Christian School, Mounds View, MN), and Joan Snibor (kindergarten, Ralph M. Capain School, Clayton, MO) for their contributions to this guide.

Addition & Subtraction

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adams, Pam</td>
<td>There Was an Old Lady Who Swallowed a Fly</td>
</tr>
<tr>
<td>Becker, John</td>
<td>Seven Little Rabbits</td>
</tr>
<tr>
<td>Bone, Hildegarde</td>
<td>*My 1-2-3 Pop-Up Book</td>
</tr>
<tr>
<td>Carle, Eric</td>
<td>Rooster’s Off to See the World</td>
</tr>
<tr>
<td>Dunrea, Olivier</td>
<td>Deep Down Underground</td>
</tr>
<tr>
<td>Gerstein, Mordcai</td>
<td>Roll Over</td>
</tr>
<tr>
<td>Gister, David</td>
<td>Addition Annie</td>
</tr>
<tr>
<td>Hawkins, Collin</td>
<td>I Know an Old Woman</td>
</tr>
<tr>
<td>Hawkins, Collin</td>
<td>*Adding Animals</td>
</tr>
<tr>
<td>Hayes, Sara</td>
<td>Nine Ducks Nine</td>
</tr>
<tr>
<td>Hindley, Judy</td>
<td>Mrs. Mary Malarky’s Seven Catt</td>
</tr>
<tr>
<td>Kheridian, David</td>
<td>The Cats’ Midsummer Jamboree</td>
</tr>
<tr>
<td>Krahn, Freda</td>
<td>*The Family Minis</td>
</tr>
<tr>
<td>Marshall, Ray & Korky Paul</td>
<td>*Pop-Up Numbers #1 Addition</td>
</tr>
<tr>
<td>Nelson, JoAnne</td>
<td>One and One Make Two</td>
</tr>
<tr>
<td>Rees, Mary</td>
<td>Ten in a Bed</td>
</tr>
<tr>
<td>Schade, Susan & Joe Buller</td>
<td>Hello! Hello!</td>
</tr>
<tr>
<td>Westcott, Nadine Bernard</td>
<td>I Know an Old Lady Who Swallowed a Fly</td>
</tr>
</tbody>
</table>

Attributes

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahlberg, Janet & Allan Ahlberg</td>
<td>The Baby’s Catalogue</td>
</tr>
<tr>
<td>Anna, Mitsumasa</td>
<td>Anna’s Aesop</td>
</tr>
<tr>
<td>Anna, Mitsumasa</td>
<td>Anna’s Flea Market</td>
</tr>
<tr>
<td>Dorros, Arthur</td>
<td>Alligator Shoes</td>
</tr>
<tr>
<td>Ehler, Lois</td>
<td>Color Farm</td>
</tr>
<tr>
<td>Fey, James</td>
<td>Long, Short, High, Low, Thin, Wide</td>
</tr>
<tr>
<td>Freeman, Don</td>
<td>Corduroy</td>
</tr>
<tr>
<td>Handford, Martin</td>
<td>Find Waldo Now</td>
</tr>
<tr>
<td>Hoban, Tara</td>
<td>Exactly the Opposite</td>
</tr>
<tr>
<td>Hobeinan, Mary Ann</td>
<td>A House is a House for Me</td>
</tr>
<tr>
<td>Lobel, Arnold</td>
<td>Frog and Toad Are Friends</td>
</tr>
<tr>
<td>O’Keefe, Starr</td>
<td>World of Wonders, A Trip Through Numbers</td>
</tr>
<tr>
<td>Parnell, Peter</td>
<td>Feet</td>
</tr>
<tr>
<td>Reid, Margarette S.</td>
<td>The Button Box</td>
</tr>
<tr>
<td>Sipper, Peter</td>
<td>CRASH! BANG! BOOM! People</td>
</tr>
<tr>
<td>Young, Ed</td>
<td>Seven Blind Mice</td>
</tr>
</tbody>
</table>

Estimation

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aarderma, Verna</td>
<td>Bringing the Rain to Kapiti Plain</td>
</tr>
<tr>
<td>Adler, David</td>
<td>Base Five</td>
</tr>
<tr>
<td>Adler, David</td>
<td>Roman Numerals</td>
</tr>
<tr>
<td>Anne, Mitsumasa</td>
<td>Anna’s Counting House</td>
</tr>
<tr>
<td>Asch, Frank</td>
<td>Popcorn</td>
</tr>
<tr>
<td>Asimov, Isaac</td>
<td>*How Did We Find Out About Numbers?</td>
</tr>
<tr>
<td>Carroll, Lewis</td>
<td>The Walrus and the Carpenter</td>
</tr>
<tr>
<td>Charosh, Mannis</td>
<td>*Number Ideas Through Pictures</td>
</tr>
<tr>
<td>Clark, Ann Nolan</td>
<td>Tia Maria’s Garden</td>
</tr>
<tr>
<td>DePaolo, Tami</td>
<td>Pancake for Breakfast</td>
</tr>
<tr>
<td>Froman, Robert</td>
<td>*Less Than Nothing is Really Something</td>
</tr>
<tr>
<td>Gantschev, Ivan</td>
<td>The Train to Grandma’s</td>
</tr>
<tr>
<td>Hoban, Tuna</td>
<td>Count and See</td>
</tr>
<tr>
<td>Hutchins, Pat</td>
<td>One Hunter</td>
</tr>
<tr>
<td>Kaufman, Joe</td>
<td>*Big and Little</td>
</tr>
<tr>
<td>Keats, Ezra Jack</td>
<td>Apt. 3</td>
</tr>
<tr>
<td>Krenske, Stephen</td>
<td>Big Time Bears</td>
</tr>
<tr>
<td>Linn, Charles F.</td>
<td>*Estimation</td>
</tr>
<tr>
<td>Lobel, Arnold</td>
<td>Ming Lo Moves the Mountain</td>
</tr>
<tr>
<td>Martin, Jr., Bill</td>
<td>The Happy Hippopotami</td>
</tr>
<tr>
<td>Mason, Lara</td>
<td>A Book of Boxes</td>
</tr>
<tr>
<td>McGraw, Sheila & Paul Cline</td>
<td>My Mother’s Hands</td>
</tr>
<tr>
<td>McKissack, Patricia</td>
<td>A Million Fish . . . More or Less</td>
</tr>
<tr>
<td>Marsch, Robert</td>
<td>Something Good</td>
</tr>
<tr>
<td>Parker, Tom</td>
<td>In One Day</td>
</tr>
</tbody>
</table>

Fractions

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rankin, Laura</td>
<td>The Handmade Alphabet</td>
</tr>
<tr>
<td>Schenk deRegnier, Beatrice</td>
<td>So Many Cats</td>
</tr>
<tr>
<td>Sharmut, Marjorie Weinman</td>
<td>The Three Hundred Twenty-Ninth Friend</td>
</tr>
<tr>
<td>Shaw, Charles</td>
<td>It Looked Like Spilt Milk</td>
</tr>
<tr>
<td>Simon, Leonard & Jeanne</td>
<td>Benedict</td>
</tr>
<tr>
<td>Tolstoi, Alexis</td>
<td>The Great Big Enormous Turnip</td>
</tr>
<tr>
<td>Tinkle, Brinton</td>
<td>Do Not Open</td>
</tr>
<tr>
<td>Ueno, Noriko</td>
<td>Elephant Buttons</td>
</tr>
<tr>
<td>Walsh, Ellen Stoll</td>
<td>Mouse Count</td>
</tr>
</tbody>
</table>

Geometry

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adler, David</td>
<td>*1D, 2D, 1D</td>
</tr>
<tr>
<td>Birch, David</td>
<td>The King’s Chessboard</td>
</tr>
</tbody>
</table>
Birmingham, Duncan
"M" is for Mirror

Budney, B.
A Kiss is Round

Carle, Eric
Secret Birthday Message

Charosh, Mannis
Straight Lines, Parallel Lines, Perpendicular Lines
The Ellipse

Eberts, Marjorie & Margaret
Pancakes, Crackers, & Pizza
A Book of Shapes

Ehret, Lois
Color Zoo

Embery, Ed
Ed Emberley’s Picture Pie: A Book of Circle Art
The Wing on a Flea

Froman, Robert
Angles are Easy at Pie
Rubber Bands, Baseballs and Doughnuts

Gardner, Bean
What Is It?

Greenes, Carole
*The Magic Shapes

Grifalconi, Ann
The Village of Round and Square Houses

Hoban, Tana
*Big Ones, Little Ones
*Circles Around Us
Circles, Triangles and Squares
*Shapes Around Us

Jonas, Ann
Round Trip

Juster, Norton
*The Dot and the Line

McDermott, Gerald
Arrow to the Sun

Nesbit, E. Melissa

Phillips, Jo
Exploring Triangles

Ries, John J.
Shapes

Srivastava, Jane
*Spacers, Shapes and Sizes

Sullivan, Janet
*Round is a Pancake

Testa, Furtio
If You Look Around You

Tompert, Ann
Grandfather Tang’s Story

Tucker, Sian
*The Shapes Game

Graphing

Carlson, Nancy
Harriet’s Halloween Candy

Caulfield, Rebecca
A Pocketful of Cricket

Geringer, Laura
A Three Day Hat

Papy, Frederique
*Graph Games

Rice, Eve
Peter’s Pockets

Slobodkina, Esphyr
Caps for Sale

Large Numbers & Place Value

Anno, Mitsumasa
*Socrates and the Three Little Pigs

Base, Graeme
The Eleventh Hour

Birch, David
The King’s Chessboard

Gag, Wanda
Millions of Cats

Greene, Carol
The Thirteen Days of Halloween

Kozco, Keiko
The Wolf’s Chicken Stew

King, Clive
Me and my Million

MacCarthy, Patricia
Ocean Parade

Martin, Jr., Bill
The Happy Hippopotamis

McKissack, Patricia
A Million Fish . . . More or Less

Munsch, Robert
Moira’s Birthday

Rosenberg, Amye
One in One Hundred Busy Counting Book

Schwartz, David M.
How Much is a Million?
If You Made a Million

Trivas, Irene
Emma’s Christmas

Logic

Anno, Mitsumasa
*Anno’s Hat Tricks

Toppy-Turvy Upside-Downers

Froman, Robert
Venn Diagrams

Shannon, George
More Stories to Solve: Fifteen Folktales from Around the World

**Stories to Solve: Folktales from Around the World”

Measurement

Adams, Pam
Ten Beds Tall

Allen, Pam
Who Sent the Boat?

Anno, Mitsumasa
*The King’s Flower

Briggs, Raymond
Jim and the Beanstalk

Calumsean, Stephanie
The Principal’s New Clothes

Caple, Kathy
The Biggest Nose

Carle, Eric
Papa, Please Get the Moon for Me
The Very Hungry Caterpillar

Dahl, Roald
Estate Toot

Eastman, Philip D.
Big Dog, Little Dog

Farber, Norma
As I Was Crossing Boston Common

Fujikawa, Gyo
"The Crow and the Pitcher,"
"The Sun and the Wind,"
"The Wonderful Porridge Pot,"
and "Why Evergreens Keep Their Leaves" in *Fairy Tales and Fables

Gachtner, Fred
*Little Elephant and Big Mouse

Galdone, Paul
The Three Billy Goats Gruff

Glasburg, Mirra
Mushroom in the Rain

Grimes, Nikki
Something On My Mind

Hall, Crowell
*Tellane the Rabbit

Kaufman, Joe
*Big and Little

Kellogg, Steven
Much Bigger Than Martin

Kitchen, Bert
Animal Alphabet

Leaf, Maurice
The Story of Ferdinand

Lionni, Leo
Inch by Inch

Lopshire, Robert
*The Biggest, Smallest, Fastest, Tallest Things You’ve Ever Heard Of

Lord, John Vernon
The Giant Jam Sandwich

McMillan, Bruce
Super, Super, Superwords

Morimoto, Junko
The Inch Boy

Myller, Rolf
How Big Is a Foot?

Nelson, JoAnne
How Tall Are You?

Nesbit, E. Melissa

Smith-Moore, J.J.
Sally Small

Tyron, Leslie
Albert’s Alphabet

Miscellaneous

Reimer, Luetta & Wilbert Reimer
*Mathematicians Are People Too

Studio D.
*Crazy Creature Number Puzzles

Money

Day, Alexandra
Frank and Earnest

Hoban, Tana
Twenty-six Letters and Ninety-nine Cents

Leedy, Loreen
The Monster Money Book

Lobel, Arnold & Anita Lobel
On Market Street

Mathis, Sharon Bell
The Hundred Penny Box

Merrill, Jean
The Toothpaste Millionaire

Nelson, JoAnne
*The Magic Money Machine

Schwartz, David A.
If You Made a Million

Silverstein, Shel
"Smart" in Where the Sidewalk Ends

Viorst, Judith
Alexander, Who Used to Be Rich Last Sunday

Williams, Vera B.
A Chair For My Mother

Zemach, Harvey & Margot Zemach
A Penny A Look
Multiplication & Division

Aker, Suzanne
What Comes in Twos, Threes and Fours?

Anno, Mitsumasa
Anno’s Mysterious Multiplying Jar

Dubanovich, Arlene
Pigs in Hiding

Hutchins, Pat
The Doorbell Rang

Marshall, Ray & Korky Paul
Pop-Up Numbers #3 Multiplication
Pop-Up Numbers #4 Division

Mathews, Louise
Bunches and Bunches of Bunnies

Williams, Yera B.
A Chair for My Mother

Number Concepts & Relationships

Adler, Irving
Mathematics

Adler, Irving & Ruth Adler
Numbers Old and New

Anno, Mitsumasa
Anno’s Math Games

Bang, Molly
Ten, Nine, Eight

Becker, John
Seven Little Rabbits

Carson, Philip
Numbers

Clark, Ellen
Understanding Numbers

Dragoonwagon, Crescent
I Hate My Brother Harry

Galdone, Paul
The Three Bears

James, Elizabeth, & Carol Barks
Probability

Juster, Norton
The Phantom Tollbooth

Larrick, Nancy
Cat’s Are Cats

Lottridge, Celia Barker
One Watermelon Seed

Luce, Mamie
*Infinity: What Is It?
*Sets: What Are They?
*Ten: Why Is It Important?

McGovern, Ann
Stone Soup

Ormerod, Jan
101 Things to do with a Baby

Reed, Mary and Edith Ostwald
*Numbers

Sitomer, Mindell & Harry Sitomer
How Did Numbers Begin?
*Zero is Not Nothing

Srivastava, Jane
*Number Families

Thornhill, Jan
The Wildlife 1, 2, 3, A Nature Counting Book

Watson, Clyde
Binary Numbers

Zaslavsky, Claudia
Zero: Is It Something? Is It Nothing?

Numeration & Counting

Aker, Suzanne
What Comes in 2’s, 3’s and 4’s?

Alain, B.
*One, Two, Three, Going to Sea

Anno, Mitsumasa
Anno’s Counting Book

Aylesworth, James
One Crow

Baum, Arline & Joseph Baum
*One Bright Morning

Berenstein, Stan & Janice
Berenstain Bears on Wheels

Bishop, Claire Eluchet
The Five Chinese Brothers

Blumenthal, Nancy
Count-A-Saurus

Brown, Marc, ed.
Hand Rhymes

Bucknall, Caroline
One Bear All Alone

Burningham, John
Hey! Get Off Our Train

Calemenson, Stephanie
*Teen Tens or Less

Cleve, Eric
My Very First Book of Numbers

Carter, David A.
How Many Bugs in a Box?

Cave, Kathy & Chris Riddell
Out for the Count: A Counting Adventure

Clifton, Lucille
Everett Anderson’s 1, 2, 3

Crews, Donald
Ten Black Dots

Christlow, Eileen
Five Little Monkeys Jumping on the Bed
Five Little Monkeys Sitting on a Tree

Crowther, Robert
The Most Amazing Hide-and-Seek Counting Book

Demi
Demi’s Count the Animals 1, 2, 3

DuBois, William P.
The Twenty-one Balloons

Dunbar, Joyce
Ten Little Mice

Dufva, Roger
*Two Lonely Ducks

Ehlert, Lois
Fifth Eyes

Eichhorn, Fritz
Dancing in the Moon

Elkin, Benjamin
Six Foolish Fishermen

Embery, Barbara
One Wide River to Cross

Estes, Ebanor
Hundred Dresses

Feldstein, Muriel
Moja Means One: A Swahili Counting Book

Garne, S. T. & Lisa Erte
One White Sail

Giganti, Paul, Jr.
Each Orange Had Eight Slices
How Many Sraits?

Greene, Carol
Opossums in a Tree

Grossman, Virginia
Ten Little Rabbits

Hague, Kathleen
Numbears: A Counting Book

Hamm, Diane Johnston
How Many Feet in the Bed?

Hammond, Franklin
Ten Little Ducks

Haskins, Jim
Count Your Way Through Africa
Count Your Way Through Canada
Count Your Way Through China
Count Your Way Through Germany
Count Your Way Through India
Count Your Way Through Israel
Count Your Way Through Italy
Count Your Way Through Japan
Count Your Way Through Korea
Count Your Way Through Mexico
Count Your Way Through Russia
Count Your Way Through the Arab World

Hawkins, Collin & Jacqui Hawkins
When I Was One

Hayes, Sarah
Nine Ducks Nine

Hill, Eric
*S. S. Happiness Crew Book of Numbers

Hindley, Judy
Mrs. Mary Malarky’s Seven Cats

Hoban, Russell
*Ten What?

Hoekstra, Yvonne
One Green Frog

Hooks, William
The Seventeen Gerbils of Class 4A

Howard, Katherine
I Can Count to One Hundred...
Can You?

Harada, Joyce
It’s the 0-1-2-3 Book

Hulme, Joy
Sea Squares

Ifrah, Georges
*From One to Zero - A Universal History of Numbers

Ipeck, Dahlov Zorach
*Brown Cow Farm
*Ten Big Farms

Johnston, Tony
Whale Song

Kahl, Virginia
*How Many Dragons are Behind the Door?

Keats, Ezra Jack
Over in the Meadow

Kheridian, David
The Cats’ Midsummer Jamboree

Kitamura, Satoshi
When Sheep Cannot Sleep

Kitchin, Bert
Animal Numbers

Koelling, Cary
Eryi’s Counting Book

Kredensky, Gail & Stanley Mack
One Dancing Drum

LeSieg, Thea
Ten Apples Up on Top!

Lionni, Leo
Frederick

© 1994 Evergreen Learning Corporation
Mack, Stanley
Ten Bears in My Bed: A Goodnight Countdown

Martin, Bill
*Monday, Monday, I Like Monday
*Ten Little Squirrels

Mathews, Louise
Bunches & Bunches of Bunies

Mayer, Marianna & Gerald
Mcdennott
The Brambleberries Animal Book of Counting

McFadzean, Anita
One Special Star

McKee, Craig and Margaret
Holland
The Teacher Who Could Not Count

McLerran, Alice
The Mountain That Laughed a Bird

McMillan, Bruce
One, Two, One Pair!

Milne, A. A.
*Pooh's Counting Book

Moncur, Jane
My Six Book

Moore, Inga
Six-Dinner Sid

Moss, Jeffrey
*Five People in My Family

Nelson, Joanne
Count by Twos

O'Brien, Thomas Clement
Odds and Evens

O'Donnell, Elizabeth Lee
The Twelve Days of Summer

Pallotta, Jerry
The Icky Bug Counting Book

Peck, Merle
Roll Over!: A Counting Song

Peppe, Rodney
Circus Numbers

Pomerantz, Charlotte
One Duck, Another Duck

Quackenbush, Robert M.
*Poems for Counting

Reese, John J.
Numbers

Rockwell, Norman
*Counting Book

Samson, Sheila White
Moon to Sun: An Adding Book
On the River: An Adding Book
The World from My Window

Scarry, Richard
Richard Scarry's Best Counting Book Ever

Scott, Ann Herbert
One Good Horse: A Cowpuncher's Counting Book

Seignobos, Françoise
*Jean-Marie Counts Her Sheep

Selfridge, Oliver
*Fingers Come in Fives

Sendak, Maurice
One Was Johnny
Seven Little Monsters

Serfozo, Mary
Who Wants One?

Sesame Street
The Count's Counting Book
*The Counting Book

Seuss, Dr.
One Fish, Two Fish, Red Fish, Blue Fish
The 500 Hats of Bartholomew Cubbins

Shaffer, Jeff
The Right Number of Elephants

Shub, Elizabeth
*The Twelve Dancing Princesses

Slobodkin, Esphyr
Caps for Sale

Slobodkin, Louis
*One is Good, but Two are Better

Thaler, Mike
Seven Little Hippos

Thornhill, Jan
The Wildlife 1-2-3: A Nature Counting Book

Trivas, Irene
Emma's Christmas: An Old Song

Tudor, Tasha
I is One

Vadsworth, Olive
Over in the Meadow

Wahl, John and Stacey Wahl
I Can Count the Petals of a Flower

Watson, Amy
*The Folk Art Counting Book

Weiss, Makom
*Six Hundred Sixty-Six Jellybeans! All That?

Wildsmith, Brian
One, Two, Three

Wood, Audrey & Don Wood
Piggies

Woodward, James
One to Ten, Count Again

Wylie, Joanne
A More or Less Fish Story
How Many Monsters?

Zlatorsky, Clauda
Count on Your Fingers, African-Style

Ziefert, Harriet
A Dozen Dogs: A Read-and-Count Story
Where's the Halloween Treat?

Zimmerman, H. Werner
Alphonse Knows: Zero Is Not Enough

Zolотов, Charlotte
*One Step, Two

Patterns

Carle, Eric
Animals, Animals
Cleveland, David
April Rabbitts
Dahl, Roald
Eisio Trot
Embery, Ed
ABC
Hoban, Tana
Look Up, Look Down

Hutchins, Pat
*Clocks and More Clocks

Lloyd, David
The Stopwatch

Provence, Alice & Martin
The Year at Maple Farm

Sendak, Maurice
Chicken Soup with Rice

Shulevitz, Uri
One Monday Morning

Simon, Carly
Amy the Dancing Bear

Slobodkin, Louis
*The Late Cuckoo

Ungerer, Tomi
Moon Man

Ward, Cindy
Cookie's Week

Williams, Vera B.
Three Days on a River in a Red Canoe

Zolотов, Charlotte
Over and Over

Time

Anno, Mitsunaga
All in a Day
Anno's Counting Book

Bein, Harry
*All Kinds of Time

Carle, Eric
The Grouchy Ladybug

Clifton, Lucille
Everett Anderson's Nine Months Long Year

Coleridge, Sara
January Brings the Snow

Combs, Ann
How Old Is Old?

Galdone, Paul
The Little Red Hen

Gibbons, Gail
Clocks and How They Go
Sun up, Sun down
The Seasons of Arnold's Apple Tree

Gray, Nigel
A Country Far Away

Hawkins, Collin
What Time Is It, Mr. Wolf?

Hutchins, Pat
*Clocks and More Clocks

Lloyd, David
The Stopwatch

Provence, Alice & Martin
The Year at Maple Farm

Sendak, Maurice
Chicken Soup with Rice

Shulevitz, Uri
One Monday Morning

Simon, Carly
Amy the Dancing Bear

Slobodkin, Louis
*The Late Cuckoo

Ungerer, Tomi
Moon Man

Ward, Cindy
Cookie's Week

Williams, Vera B.
Three Days on a River in a Red Canoe

Zolотов, Charlotte
Over and Over

© 1994 Everyday Learning Corporation

Everyday Learning Corporation
P.O. Box 1479
Evanston, IL 60204-1479
800-382-7670

Item No. 09-94-02