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Abstract 

Background 

Iowa has implemented the secondary engineering curriculum Project Lead The Way (PLTW) in 

an effort to create a more seamless transition for students from secondary school into science, 

technology, engineering, and mathematics post-secondary programs. PLTW has been 

implemented in all fifty states; however, there has been sparse research to-date that has 

rigorously measured the impact of PLTW on mathematics and science achievement.  

 

Purpose (Hypothesis) 

Our first purpose is to report on the socio-demographic, academic, and achievement of PLTW 

students. Second, we hypothesize that cognitive improvement for PLTW students is greater than 

that for non-PLTW students. 

 

Design/Method 

We used Iowa’s statewide longitudinal data system to follow multiple cohorts of PLTW 

participants and nonparticipants from 8
th

 grade into higher education. We derived a comparable 

treatment and control group by matching students based on their propensity to enter PLTW, 

permitting a stronger interpretation of the program’s impact than prior studies. 

 

Results  

We found that PLTW enrolls a disproportionate number of white males and students who 

performed in the upper quartile in mathematics and science prior to PLTW enrollment. Further, 

we found statistically significant evidence that PLTW increases mathematics or science scores 
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on the Iowa Test of Educational Development by 5 points after controlling for selection bias. The 

effect size (f
2
) for mathematics was 0.15 and 0.05 for science—a moderate and small effect size, 

respectively. 

 

Conclusions  

PLTW attracts high-achieving students; however, after controlling for this using propensity score 

matching we found participation in PLTW produces a small or moderate effect on test score 

growth. Further studies will also need to properly account for pre-existing ability in mathematics 

and science when determining achievement outcomes to ensure results are not being driven by 

pre-existing ability.  
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1. Introduction 

Nationally, the United States is facing an international decline in performance in 

mathematics and science. In 2003, the Program for International Student Assessment (PISA), 

found that nearly 30 percent of U.S. college students required remedial mathematics and sciences 

courses in their first year of college. Similar results were found by the 2003 International 

Mathematics and Science Study (TIMSS). According to Kuenzi (2008) American students, while 

outscoring the international average in mathematics and science, still scored lower in composite 

scores than nine other developed countries. 

Some scholars assert that international comparisons may not be justified since test results 

may not accurately reflect other, namely rural, parts of the country (Wildavsky, 2011; 

Rotherham, 2011). Even so, if we take a step back and analyze how American students are 

performing according to our own benchmarks, we find similar shortcomings. While proficiency 

in mathematics skills among 8
th

 graders has increased on the National Assessment of Educational 

Progress (NAEP), basic skill levels have remained unchanged over the same time period. 

Twelfth-grade tests results have actually declined since 1990, with fewer students scoring as 

either proficient or basic in their mathematics skills. In addition, anywhere from 10 to 35 percent 

of all American students score under the basic skill-level in mathematics. In 2005, nearly a third 

of all students tested below basic skill levels in mathematics. In essence, a significant portion of 

American students are failing to achieve the standards set by American educators, much less 

remain competitive with their international peers. 

One reason for this decline may be that the traditional teaching methods for mathematics 

and science have come under scrutiny. Often, the ―chalk-and-talk‖ teaching model has become 

associated with declining student engagement with mathematics and science (Mills & Treagust, 

2003). School leaders and administrators have sought to engage students through hands-on 
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instruction. Problem-based learning (PBL) has become a growing field of interest, especially 

within the science, technology, engineering, and mathematics (STEM) fields. The instructional 

approach offers students the opportunity to engage a topic in ―real-world‖ circumstances, where 

students are presented ill-structured problems which require critical thinking and reasoning skills 

to solve (Barrows & Kelson, 1995; Hmelo-Silver, 2004). 

Project Lead the Way (PLTW) is a fast-growing PBL program emerging in high schools. 

Nationally, PLTW has been implemented in all 50 states and enrollment has grown to more than 

350,000 students to 17% of all high schools (Misko, 2011). PLTW’s explicit goal is to increase 

student interest in engineering and other STEM-related majors and careers (PLTW, 2006; 

Maguire 2006). 

The curriculum provides foundational instruction in pre-engineering and design while 

also providing specialized instruction in a range of specific topics from aerospace engineering to 

biotechnical engineering. Each course is hands-on and provides the opportunity for students to, 

for example, work with computer-aided drafting software or build mechanical robots. 

In addition, PLTW provides mandatory professional development to teachers, counselors, 

and administrators. Each professional development course is team taught by a university 

professor and master teacher. The goal of these opportunities is to ensure all PLTW teachers are 

proficient with the curriculum. 

While PLTW has multiple goals, several papers have begun to explore the relationship 

between PLTW participation and achievement on standardized exams (Blais & Adelson, 1998; 

Bottoms & Anthony, 2005; Bottoms & Uhn, 2007; Rogers, 2006; Tran & Nathan, 2009, 2010; 

and Walcerz, 2007). However, few of these studies accounted for pre-existing ability prior to 

enrolling in the PLTW curriculum. Since most states provide PLTW as an optional curriculum, it 
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is likely that the curriculum attracts students who are already interested in STEM courses. Since 

pre-existing achievement often portends future performance, it is also likely that the reported 

differences between PLTW participants and non-participants are not entirely attributable to the 

program itself. 

This paper attempts to control for pre-existing achievement levels by using administrative 

data from Iowa’s statewide longitudinal data system (SLDS). Iowa tests all students in 8
th

 grade 

in mathematics and science, which is the year prior to when PLTW is available to students. Iowa 

then tests all students again in 11
th

 grade as part of their No Child Left Behind obligations.
7
 We 

used propensity score matching to derive a smaller, but balanced dataset of comparable PLTW 

participants and non-participants. We used the balanced treatment and control groups to measure 

PLTW’s impact on the relative growth of science and mathematics scores between 8
th

 and 11
th

 

grade.  

2. PLTW Program Description 

In 2005 Iowa implemented the PLTW curriculum to create a seamless transition for 

students from secondary school into STEM majors at two- and four-year postsecondary 

institutions (Maguire, 2006). Since then, enrollment has grown to over 2,000 students and it is 

currently offered in 101 of 260 Iowa school districts. The increase in Iowa’s enrollment 

coincided with growth of PLTW nationwide (e.g., Brandt, 2009; Cech, 2007; Spellman, 2007). 

The program is a sequence of year-long courses designed to teach engineering and 

problem solving concepts to high school students. The curriculum is divided into two strata 

(Taylor, Foster, & Ratcliff, 2006)—foundation courses (Introduction to Engineering Design and 

Principles of Engineering) and specialization courses (Aerospace Engineering; Biotechnical 

                                                 
7
 Iowa, however, has been using standardized exams in elementary, junior high, and high schools for several decades 

prior to the No Child Left Behind legislation. 
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Engineering; Civil Engineering and Architecture; Computer Integrated Manufacturing; and 

Digital Electronics). The sequence of courses ends with a capstone course (Engineering Design 

and Development) which requires students to take their own idea from design through 

development. In addition, Gateway to Technology is offered in middle school in selected school 

districts. 

The PLTW curriculum is optional in Iowa school districts as it is in most states. Each 

course is one full Carnegie unit (e.g., full year) and is offered to anyone between ninth and 

twelfth grade. The curriculum requires students to enroll in mathematics and science as pre- or 

co-requisite courses in conjunction with the PLTW curriculum. PLTW is open to any student 

who meets the minimum requirements, but Misko (2011) and other PLTW administrators have 

noted the program is generally targeted toward the top 80% of a school’s population. In addition, 

PLTW courses can qualify students for high school and college credit. Students are also 

encouraged to enroll in college preparatory mathematics, biology, chemistry, and physics 

courses. 

The foundation courses provide an overview of engineering and introduce students to 

various engineering aspects, such as design, and manufacturing processes. These courses involve 

students learning 3-D computer modeling, designing and reverse engineering objects, applying 

the fundamentals of physics, and using electronics and computer programs to build robotic 

machines. Specialization courses allow students to explore a specific engineering discipline in 

more detail.  

The PLTW courses offer projects which would seem engaging for a variety of students. 

For example, one segment of the curriculum requires students to design and build a small 

mechanical robot that sorts marbles made from various materials (such as metal, wood, and 
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glass) into bins to mimic sorting of recyclable materials. The marbles are sorted based on their 

opacity, which is determined by shining a light on the marble and determining the amount of 

ohms received by a sensor on the other side. Students utilize software to adjust the sensitivity of 

the sensor, which is crucial for performance. 

PLTW’s curriculum contains detailed daily lesson plans and is disseminated through 

rigorous professional development courses. All PLTW teachers must attend a two week summer 

training institute for each course to be taught (cf. Taylor et al., 2006). The summer training 

involves a university professor and experienced PLTW teacher (master teacher) for both theory 

and application with a heavy emphasis on the pedagogical approach of project based learning. In 

Iowa, most of the training originates from engineering departments at The University of Iowa or 

Iowa State University. Eventual teachers learn the same software, theory, and applications that 

their students will use. 

3. Literature Review 

PLTW is an interesting STEM program to evaluate given the recent, rapid growth across the 

United States, including Iowa. Further, it is a highly structured PBL curriculum with a strong 

focus on STEM, and potential PLTW teachers must participate in a rigorous professional 

development model. The role of PLTW’s two week professional development may be crucial as 

the teacher (facilitator) is regularly identified as a crucial role in PBL curriculums (Hmelo-Silver, 

2004; Holmes & Kaufman, 1994). 

Several studies have examined outcomes of students in PBL curriculum. Most of these 

studies have focused on medical schools, where PBL grew in popularity throughout the 1960s 

(Jonassen, 2000; Spector, 2004; Hmelo-Silver, 2004). In randomized studies, students in PBL 

curriculum scored lower on assessments which utilized multiple choice responses and focused on 

fact-based knowledge (Albanese & Mitchell, 1993; Dochy et al., 2003; Goodman et al., 1991; 
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Mennin et al., 1993; Vernon & Blake, 1993). Students scored better on assessments which 

related to problem solving, clinical performance, and explanation of clinical problems (Albanese 

& Mitchell, 1993; Hmelo, 1998; Hmelo Grotter, & Bransford, 1997; Patel, Groen, & Norman, 

1991, 1993; and Vernon & Blake, 1993). The totality of the evidence suggests students in PBL 

curriculum perform better on assessments related to problem solving and interpretation, but are 

weaker on assessments related to factual knowledge. 

However, some scholars claim PBL can have adverse effects on student learning. 

Kirschner, Sweller, & Clark (2006) argue that problem-based learning does not develop long-

term memory, and thus, is ineffective as soon as the student leaves the classroom. Brown & 

Campione (1996) found instruction with minimal guidance, such as problem-based learning, can 

let student’s misconceptions be left uncorrected. 

In addition to medical schools, PBL curriculum has expanded into engineering schools. 

Williams & Williams (1994) noted that instruction in engineering design had already been very 

similar to PBL practice and could easily be accepted amongst engineering faculty. Mills & 

Treagust (2003) reviewed several PBL curriculums in Australian universities noted the results in 

engineering are similar to those findings from medicine in that students show a lower grasp of 

engineering fundamentals, but understand “the application of their knowledge in practice and the 

complexities of other issues involved in professional practice” (p. 12) . 

PLTW is a more recent engineering PBL program, and although numerous studies have 

attempted to explore the impact of PLTW on various educational outcomes (Blais & Adelson, 

1998; Bottoms & Anthony, 2005; Walcerz, 2007), a serious limitation of these studies is the lack 

of control for pre-existing ability. However, some researchers have begun to address this issue. A 

research brief by the Southern Regional Education Board (SREB) matched PLTW participants 
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with career and technical education students with similar demographics and fields of study. 

SREB found that PLTW students who enrolled in two or more PLTW courses did significantly 

better in mathematics and science on the High Schools that Work (HSTW) assessment than 

career/technical students in comparable fields (Bottoms & Anthony, 2005). Differences between 

PLTW students and similar career/technical students were also found for subsequent course-

taking behavior, with PLTW students more likely to complete the four years of mathematics and 

science (Bottoms & Uhn, 2007). Yet, SREB’s study was limited to matching on students’ race 

and gender. 

In a follow-up to an earlier study, Tran & Nathan (2010) collected transcript data from a 

school district in Wisconsin which was heavily represented by racial minorities as well as a high 

proportion of students eligible for free or reduced lunch prices. Their study matched PLTW 

participants with nonparticipants using results of prior achievement scores in mathematics and 

science, gender, and free and reduced lunch eligibility. Tran & Nathan measured relative change 

of mathematics and science scores between the state-mandated tests, a part of the No Child Left 

Behind requirements between 8
th

 and 10
th

 grade. They found that PLTW had no measurable 

impact on science scores while PLTW participants actually scored lower in mathematics 

compared to similar students. 

It is important to note that there were some limitations in the Tran and Nathan study, such 

as the short time frame between the two standardized assessments. The structure of the study 

only permitted students to realistically enroll in a single class, although a very small number 

enrolled in two courses. Additionally, the paper’s focus was on a single school district with a 

limited sample size. Yet, the study supported crucial questions about the integration of math in 

the PLTW curriculum. In a curriculum review, Prevost et al. (2009) and Nathan et al. (2008) 
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found some, but minimal alignment between PLTW curriculum and standards set by the National 

Council of Teachers of Mathematics. 

Following Tran and Nathan’s prior work, we test three hypotheses in this study. First, the 

enriched integration hypothesis proposes that enrollment in PLTW will increase cognitive 

performance in mathematics and science standardized exams. The integration between PLTW, 

mathematics, and science content in a PBL context means students will better understand that 

information and demonstrate that knowledge in achievement assessments. Under this hypothesis, 

PLTW students would have greater growth in cognitive development for mathematics and 

science between 8
th

 and 11
th

 grade as compared to non-PLTW students. 

An alternative hypothesis is the insufficient integration hypothesis, where mathematics 

and science content is insufficiently integrated into the PLTW curriculum. In this scenario, the 

PLTW treatment would not lead to any relative improvement in cognitive development for 

mathematics and science. 

A review of the PBL literature indicates a potential third hypothesis where curriculum 

could “lead to changes in attitude, confusion, or even misconceptions that hinder student 

performance” (Tran & Nathan, 2009, p. 10). Prior studies, such as Brown & Campione (1996), 

suggest inadequate guidance in PBL curriculum can let student’s misconceptions be left 

uncorrected and lead to lower relative growth between 8
th

 and 11
th

 grades. 

4. Data 

 The Iowa Department of Education maintains a longitudinal data set that tracks students 

through high school into college and the workforce. Since 2005, each student has been assigned 

a unique student identifier, which is retained as they progress through high school, including if 

they transfer to any other secondary institution within Iowa. Figure 1 shows the path of students 

from middle school through the workforce. Our focus in this paper is the short-term impact on 
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high school achievement tests, so the main source of data will be limited to the secondary school 

data set.  

[FIGURE 1 ABOUT HERE] 

 Iowa’s administrative records also contain socio-demographic data, achievement scores 

in the area of mathematics, science, and reading, institutional-level factors, and course 

enrollment information. Socio-demographic information includes the student’s race/ethnicity, 

gender, eligibility for free and reduced lunch (an underreported proxy for economic status, 

Harwell & LeBeau, 2010), and whether the student is homeless. The data set contains scores 

from the Iowa Test of Basic Skills (ITBS) for 8
th

 grade and Iowa Test of Educational 

Development (ITED) for 11
th

 grade, including scores by subject exam (reading, science, and 

mathematics). It also contains information on whether students have a special need, indicated by 

a Section 504 disability or individual education plan (IEP). Finally, the school district is 

recorded, which we can use to control for institutional-level factors. 

 We limited our analysis to all students enrolled in school districts offering PLTW, which 

yielded over 35,000 students. Since the focus of this paper is the relative growth in test scores 

between the 8
th

 grade ITBS and 11
th

 grade ITED, the timeframe of the data means we had to 

limit our data to the class of 2009 and the class of 2010. Further, students were only included if 

their records were available in 8
th

 and 11
th

 grade. Consequently, the sample size included 26,030 

students. 

 PLTW participants were identified through course records. All PLTW programs are 

assigned a program number using the Classification of Instructional Programs (CIP), which 

indicates a list of PLTW courses offered at each school district. Students were considered a 

PLTW participant if they enrolled in at least one PLTW course in either 9
th

 or 10
th

 grade. For the 
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purposes of this study, nonparticipants are students who did not enroll in a PLTW course in 9
th

 or 

10
th

 grade, but were enrolled in a school district that offered the program. 

Table 1 shows the descriptive statistics from the PLTW dataset for the 2009 and 2010 

cohorts. Total enrollment was 1,321 students, compared to 24,709 students in the control group. 

The data strongly suggests the presence of selection bias. Participants were disproportionally 

white males compared to nonparticipants. Eighty-five percent of the PLTW participants were 

male and 91 percent of the participants were white. By contrast, 49% of non-participants were 

male  80% were white. The proportion of females entering PLTW, however, is approximately 

the same amount of females entering mechanical and electrical engineering programs nationwide 

(Walcerz, 2007). 

[TABLE 1 ABOUT HERE] 

Further, the economic status proxies indicated PLTW participants were less likely to come 

from low-income families. Sixteen percent of participants were eligible for free or reduced 

lunch, compared to 32 % of the control group. PLTW participants were also twice as likely to be 

identified as a part of a gifted & talented program (21%) and were seven times less likely to have 

an IEP (2%). 

 Finally, we found PLTW participants had higher achievement in mathematics and science 

than non-PLTW participants prior to entering in the program. Eighth grade mathematics scores 

show mean mathematics scores were in the 80
th

 percentile, compared to the 60
th

 percentile for 

nonparticipants. Science scores show a similar pattern. The mean participant score was the 84
th

 

percentile compared to the 64
th

 percentile for nonparticipants. 

5 Methodology 

Selection Bias 
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Since enrollment in PLTW is not random, we must be control for pre-existing 

achievement not attributable to the program. Data shown in Table 1 demonstrates that PLTW 

participants already exhibit higher mathematics and science scores prior to enrolling into PLTW. 

Thus, a simple comparison between expected values (e.g., mean differences) between the treated 

and control group is highly biased. 

It is important to note that there are two levels of selection bias: for school districts and 

for students. Most noticeably, school districts that offer PLTW have a larger number of students, 

and are more likely to be in an urban setting. The average size of a PLTW district in 2007 was 

1,830 students compared to the 339 students for non-PLTW districts. While it is possible to 

control for selection bias with observed variables, such as size, we also know that PLTW 

districts were also selected on non-observables, such as relationships between PLTW program 

officers and administrators and the willingness of administrators to pursue ―innovative‖ 

programs. In order to limit bias from school district-level selection bias, the control group 

consists only of students from districts offering PLTW, but who did not enroll in any PLTW 

courses. 

 In addition to school district selection bias, we have already highlighted data which 

suggest selection bias at the student level. We can determine if there is any selection bias by 

estimating the likelihood of entering PLTW while conditioning on data prior to enrollment. We 

use socio-demographic and testing data from 8
th

 grade—the year prior to any PLTW 

enrollment—to calculate the conditional probability of enrolling in PLTW in 9
th

 or 10
th

 grade 

given the observed covariates (p. 296, Rosenbaum, 2002) 

                             (1) 



15 

 

Where ρ(X) is the propensity score, τ indicates treatment (enrolling in PLTW = 1), X is a matrix 

of historical socio-demographics (gender, race, free/reduced lunch, and homeless status) and 

testing data (reading, mathematics, and science) from 8
th

 grade—a year prior to PLTW entry—

and φ(•) is the logit function.
8
 

Matching 

With selection bias, the distribution for the outcome of interest (Y, Y’) is unequal across the 

treatment variable (τ’). Specifically, Table 1 shows the outcome of interest (11
th

 grade test 

scores) are much higher for participants, but participants are also more likely to be male, white, 

high-achievers in mathematics and science, are more likely to be in gifted and talented programs, 

and are less likely to be eligible for free or reduced lunch. The unequal distribution or 

―imbalanced‖ data set is formally noted by: 

         

 Rosenbaum and Rubin (1983, 1984) prove that the distribution of outcomes can be 

balanced using propensity scores. Namely, students with similar propensity scores, ρ(X), are 

matched while unmatched students are discarded from the data. Rosenbaum and Rubin (1983, 

1984) demonstrate that 

          

where ρ(X) is derived from equation 1. 

We can estimate the impact of PLTW on student outcomes by comparing the expected 

values of the treatment and control group once the propensity of PLTW entry, ρ(X), is estimated. 

Specifically, 

                                                 
8
 This leaves the question if participation was determined by an unobserved variable. This cannot be answered with 

the data and is a weakness of propensity score analysis and we must rely on the stable unit treatment value 

assumption (SUTVA), which ignores any unobserved covariate that affects the probability of treatment. Some of 

this concern is mitigated since unobserved covariates are likely correlated with observed variable, thereby limiting 

the reliance on SUTVA (Stuart, 2009). 
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can be denoted as the average treatment effect. 

The quality of matching is dependent upon the matching algorithm. Figure 2 illustrates 

the trade-off between matching algorithms. Imbalanced data is often present in large 

observational data sets, but provides biased estimates of the regression coefficients. Matching 

will reduce bias to various degrees. Some matching algorithms may retain large sample sizes, but 

only provide modest balance. Stricter matching algorithms can provide precise balance, but 

greatly reduce the sample size, which could increase the incidence of Type II errors. 

[FIGURE 2 ABOUT HERE] 

We used three different matching algorithms to match students. The most common 

matching algorithm is ―nearest neighbor‖, where the treated student (PLTW participant) is 

matched with the nearest untreated student. Nearest neighbor is a flexible technique because it 

allows the modeler to impose additional criteria for the match. We forced matched students to be 

from the same school district and we also forced a single control student to be matched with only 

one PLTW participant. 

 One disadvantage to this matching method is that it only chooses a minimal distance 

between each treatment and control, but does not minimize the total distance. Since we are trying 

to achieve overall balance, a better approach seeks to minimize the total difference between 

treatment and control groups.  

We also chose to use genetic algorithms to find the minimal distance between treatment 

and control units. Genetic algorithms are based on the principles of population biology which use 

selection, recombination, and mutation of estimates to derive optimal solutions (Duffy, 2006; 

Holland, 1975). These algorithms are computationally more efficient than other algorithms to 
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find solutions to optimization problems. In this case, we used genetic algorithms from Ho, Imai, 

King, & Stuart (2011) to minimize the distance (difference) between the treatment and control 

group. 

The distance between these two groups are defined by the generalized Mahalanobis 

distance measure (Diamond & Sekhon, 2010). The genetic algorithms search to find an optimal 

mix of students and weights to minimize the difference in characteristics between these two 

groups. Once an optimal solution is derived, the matched students and corresponding regression 

weights are used in the subsequent analysis. 

We matched one participant to one nonparticipant and also matched one participant to 

two nonparticipants with genetic algorithms. All three matching methods—nearest neighbor, 

one-to-one matching with genetic algorithms, and one-to-two matching with genetic 

algorithms—were used in this study. 

Impact on Test Scores: Regression Model 

Since propensity score matching does not deliver estimates of program impact, we 

derived a parametric model of PLTW’s impact on test scores between 8
th

 and 11
th

 grade using a 

difference-in-differences (DID) estimator. Students in Iowa typically have the option of taking 

the foundational PLTW courses beginning in 9
th

 grade. Thus, we can use the 8
th

 grade test scores 

as a baseline, pre-program measure of students’ mathematics and science achievement prior to 

the program, and the 11
th

 grade test scores as an indicator of change in achievement in relation to 

PLTW participation.  

A participant realizes a pre-treatment test score in 8
th

 grade Y(τ,8) and post-treatment test 

score in 11
th

: Y(τ,11). Meanwhile, a non-participate realizes the 8
th

 grade test score, Y(τ’,8), and 

11
th

 grade score, Y(τ’,11), without treatment in the intervening period. The first difference is the 
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respective growth within participants and non-participants, that is, Y(τ’,11)-Y(τ’,8) and Y(τ,11) – 

Y(τ,8), respectively. We are interested if participants see a larger growth in test scores, that is, ∆ 

= [Y(τ’,11) - Y(τ’,8)] - [Y(τ,11) – Y(τ,8)]. The parameter, ∆, is the relative gain for participants 

against nonparticipants. 

Even though the data set contains individual information, students are grouped within 

school districts where performance is likely correlated. The relationship can be dichotomized 

into two levels: the first consists of individual students who are nested in the second level, the 

school districts themselves. Ordinary least squares (OLS) regression should not be used on 

nested data sets since it can increase the risk of committing Type I errors (Kreft and de Leeuw, 

1998; Barcikowski, 1980; Steenbergen and Jones, 2002). An OLS approach will overestimate the 

degrees of freedom since each student will be counted as an independent observation. In reality, 

the error term for each student observation within a district is correlated. Second, standard errors 

will be underestimated when student observations are correlated within each district (Goldstein, 

2002). As a result, both of these conditions will cause statistical significance to be overstated 

(see Schenk, 2007, Appendix A for a formal proof). 

We use a multilevel model which accounts for student variation within each school 

district (Gelman & Hill, 2006). Equation 2 allows the intercept and slope to vary by the j
th

 school 

district: 

                                  
 
         (2) 

The parameter of interest, ∆, represents the relative gain (or loss) of PLTW students compared to 

their matched peers. We are not making any direct comparison between the 8
th

 grade ITBS and 

11
th

 grade ITEDS, which is an invalid use of the standardized scores. Equation 2 estimates a 
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slope for the gain in test scores for participants and another slope for the control group. The 

difference between these slopes is summarized in the ∆ coefficient. 

There is a pair of error terms, the first, uj, is an error term for the school districts intercept 

and second is the total error term, εij, is modified to incorporate student- and school-specific 

residuals. The error terms, u and ε, have a standard normal distribution with a zero mean, i.e.: 

           

           

Subsequently, the expected value and variance of the regression can be written: 

                             

 

   

 

           
    

  

 The regression provides estimates of the fixed and random effects. The fixed effects are 

the student-specific estimates which are of primary interest in this paper. The random effects are 

the school-level variation captured by the multilevel model. 

6. Results 

Propensity Score Matching 

 Table 2 shows the results of the propensity score estimates. Males, gifted and talented, 

and ITBS scores on mathematics and science were positively correlated with entry into PLTW, 

while free lunch eligibility and individualized education plans (IEP) were negatively correlated 

with PLTW participation. 

 [TABLE 2 ABOUT HERE] 

 We generated predicted probabilities for program entry using the coefficients and 

matched students based on the results. Table 3 shows diagnostic information for each matching 
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algorithm used in this study. The nearest neighbor matching technique substantially reduced bias 

from the raw data set while reducing the sample size from 26,030 to 1,500 students. However, 

there was still some imbalance in the matched group. In particular, the nearest neighbor matching 

algorithm yielded a data set where participants had average 8
th

 grade test scores which were 

between 0.1 and 0.15 standard deviations higher than the control group. 

 [TABLE 3 ABOUT HERE] 

We also tested variants of matching using genetic algorithms. One variant matched up to 

one control student with each participant. The dataset was reduced to 1,477 students, but the 

mean difference was essentially zero. We also used matching parameters that matched up to two 

observations for each participant. The balance was similar, near zero, but the total sample size 

was increased to 2,111 students. Of the various matching algorithms attempted, we found the 

genetic matching algorithm with a maximum ratio of two non-participants to be matched with 

each participant produced the best balance between sample size and covariate balance. 

Table 4 shows the descriptive statistics for the matched data set using a genetic algorithm 

with a maximum ratio of two control students for every treatment case. PLTW participants 

comprise approximately 38 % of the sample, which was almost mostly white (90%) and male 

(85%). Average test scores are much higher for the matched data set than the full sample (see 

Table 1). The average 8
th

 grade mathematics score was 284 points and science was 289 points. 

The demographic profile of the balanced data set now mirrors the typical profile of a PLTW 

participant demonstrated in Table 1. 

[TABLE 4 ABOUT HERE] 

Test Scores 
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Table 5 shows the subsequent estimate of PLTW’s impact on mathematics scores. The 

DID estimator (Δ) shows participants had a relative gain of 5.2 points (p = 0.01) on the national 

scale score. The magnitude of impact does seem to depend on the matching algorithm and the 

sample size. The match performed using genetic algorithms, but limiting one participant to be 

matched with one non-participant showed a lower estimate and a lower t-statistic. Likewise, 

nearest neighbor matching, which also had a small sample size and greater imbalance, produced 

an estimate which was not statistically significant at any practical threshold. Unless otherwise 

noted, the remainder of this section will refer to the one-to-two genetic matching since it 

produces the best mixed of balanced covariance and large sample size. 

[TABLE 5 ABOUT HERE] 

 Table 6 shows the estimated impact of PLTW on science scores to also be 5.2 points (p = 

0.02) on the national scale score. The point-estimates show PLTW participants gained an 

average of 36 points (T + Δ) compared to a 30.8 point gain for non-participants (T). 

[TABLE 6 ABOUT HERE] 

While holding other variables constant, a PLTW participant scored in the 91
st
 percentile in 

mathematics compared to the 81
st
 percentile for similar nonparticipants by the 11

th
 grade.

9
 The 

gap in science scores is less pronounced. The mean science percentile for a participant is the 83
rd

 

percentile compared to the 80
th

 percentile for the control group.  

Additional covariates portray other important information that is not directly attributable 

to PLTW. Demographic covariates show African-American and Hispanic students’ score 

significantly lower than white student on the 8
th

 grade ITBS. Asian students, meanwhile, score 

                                                 
9
 The percentiles are based on national percentile rank. The percentiles are translated from the raw scores by 

summing the intercept (α), PLTW participant (τ), ITED (T), and interaction term (Δ) coefficients. Thus, these 

percentiles are being computed for white, female students who are not eligible for free or reduced lunch, nor 

homeless, nor a member of any special population. 
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equivalently to white students in both mathematics and science. Males score around 3 points 

higher than females in mathematics, but both genders had statistically equivalent ITBS scores on 

the science subtest. 

 Economic status also impacts test scores with students eligible for free or reduced lunch 

scoring lower on both subtests. Homeless students had mixed results, scoring lower on the 

science exam, but having equivalent mathematics scores to non-homeless students. Special 

populations also had statistically different test performance; students with an IEP or Section 504 

plan scored lower on both subtests, the former with a large disparity in scores. Gifted and 

talented students scored significantly higher on mathematics and science exams. 

Effect Size 

The results show PLTW leads to a 5.2 increase for mathematics and science scores. 

Statistical significance indicates that the estimates from the impact are unlikely a statistically 

anomaly of a program that provides no or even negative impact. The evidence from the 2009 and 

2010 cohorts suggest PLTW participation leads to an average increase of 5 points in math and 

science scores.  

 However, these results do not yet show the relative effect size—whether they are small or 

large. Literature on this topic provides several options (cf. Cohen, 1988). The most 

straightforward calculation of effect size is Cohen’s d:     . That is, the estimated impact of 

PLTW divided by the standard deviation. Using the results from the data matched using genetic 

algorithms (one-to-two) shows the estimated effect size is 0.16 for mathematics and 0.14 for 

science. Typically, effect sizes below 0.2 are considered ―small‖ impacts. 

 The calculation of the effect size, however, is more complicated in this case. Effect sizes 

from results that employ regression are sometimes expressed from Cohen’s f
2
: 
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Where       
  denotes the pseudo R

2
 for the regression model which includes socio-demographics 

(X), the interaction term (Δ), and PLTW participation (τ). The recommended thresholds for f
2
 are 

slightly different than d. A small effect is around 0.02, a moderate effect is approximately 0.15, 

and large effect is 0.35. 

 Using McFadden’s adjusted R
2
 formula, we determined the approximate effect size was 

0.15 for mathematics and 0.05 for science. Thus, the impact on mathematics scores could be 

considered a ―moderate‖ effect while the impact on science seems relatively ―small.‖ 

Multiple Carnegie Units 

 Tables 5 or 6 treat PLTW as a binary variable with students who enrolled in any PLTW 

classes labeled as a participant, regardless whether it was 1, 2, or even 3 Carnegie units. Other 

papers have limited their analysis to students completing or enrolling in two or more Carnegie 

units of instruction, arguing that PLTW must be analyzed only as a holistic sequence of courses 

(Bottoms & Anthony, 2005). 

 Most of the students in the matched data set only enrolled in one PLTW course in 9
th

 or 

10
th

 grade. Sixty-three percent of matched participants only enrolled in a single PLTW course, 

35.3% enrolled in two courses, and 1.4% enrolled in three courses—indicating they 

simultaneously enrolled in two PLTW courses in a single year.
10

 

[FIGURE 3 ABOUT HERE] 

 Figure 3 shows PLTW estimates using various different controls for participation: binary, 

continuous/binary, and continuous. The binary results reflect the coefficient and standard error 

                                                 
10

 These statistics are similar for the entire cohort, including unmatched students. Of the entire 2009 and 2010 

cohort, 65.4% of students enrolled in a single PLTW courses in their freshman or sophomore year, 29.1% enrolled 

in two courses, and 5.4% enrolled in three courses. 
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previously discussed. Continuous/binary uses a binary variable to denote the cumulative PLTW 

units and then representing the total as a set of binary variables. Point-estimates show that test 

growth corresponds to higher growth in test scores. The scores grew at an increasing rate for 

mathematics scores and a decreasing rate for science scores. However, the confidence intervals 

show the results are statistically insignificant at the 5% level. 

Bottoms & Anthony (2005) conducted their review of PLTW by isolating PLTW students 

who enrolled in two or more PLTW courses. Since PLTW is a sequence of courses, the authors’ 

motivation was to use students who had the opportunity for PLTW’s approach to take effect. We 

also analyzed PLTW’s impact for students who only enrolled in two or more PLTW courses. 

Again, the coefficient estimates a positive impact of 7.3 and 8.8 points for mathematics and 

science scores, but it is not statistically significant. A continuous variable shows each course 

increases test scores for mathematics and science by 3.8 and 4.9 points, respectively. Yet, these 

estimates were also statistically insignificant. 

Project Lead The Way and Additional Mathematics & Science Courses 

 The PLTW curriculum also requires several pre- or co-requisite courses. For instance, 

Introduction to Engineering Design, typically the first PLTW courses, usually requires algebra as 

a co-requisite. Subsequent foundation courses recommend algebra 2 as pre-or co-requisites. 

Thus, entry into PLTW also means required enrollment in additional mathematics courses. 

 So far, we have not controlled for additional mathematics and science courses, but are the 

slight increase in test scores associated with PLTW attributable to the program or additional 

mathematics and science courses? Our data set also contains other course information that was 

coded with NCES or SCED identifiers that allows us to explore this question.
11

 We counted the 

                                                 
11

 Appendix A contains the coding scheme used to aggregate math and science courses. 
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cumulative Carnegie units enrolled in a variety of mathematics and science courses in 9
th

 and 

10
th

 grade for our analysis. 

 Table 7 contains descriptive data of enrollment in additional mathematics and science 

courses from the matched data set. Despite the matching performed on 8
th

 grade data, there is 

still substantial difference between the number of Carnegie units in mathematics and science. In 

Algebra 2, for instance, the average number of units for a PLTW participant in the treatment 

group was 0.38, compared to 0.14 for a nonparticipant in the control group. Meanwhile, the 

average number of Carnegie units in chemistry for an individual in the treatment group was 0.33 

units by the 10
th

 grade compared to 0.12 in the control group. 

[TABLE 7 ABOUT HERE] 

Enrollment in these courses also has a large impact on mathematics and science 

standardized scores. Table 8 shows the estimates of PLTW while controlling for 10 mathematics 

courses and four science courses. Including these other courses lead to a significant reduction in 

the correlation between PLTW and test score growth. The interaction term for mathematics drops 

from +5 points (p-value of 0.01) to +0.5 points (p-value of 0.42); similarly, the coefficient for 

science scores falls from +5 (p-value of 0.02) points to +0.8 points (p-value of 0.38). 

[TABLE 8 ABOUT HERE] 

 The results show seven courses with a statistically significant (p-value < 0.05) impact on 

mathematics and science growth: chemistry, physics, algebra 1 (negative), algebra 2, algebra 

3/trigonometry, precalculus, and business/technical mathematics (negative). These results are 

consistent with other research, especially with respect to algebra 2 which is shown to have an 

enormous association with educational and workforce outcomes (Aldeman, 2006; Harvill, 2010). 
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 The 14 additional course variables provided very little additional explanation power, 

instead, the mathematics and science courses seems to supplant the explanatory power of PLTW 

participation. The adjusted McFadden pseudo-R
2 

for mathematics scores only grows from 6.1% 

to 6.6% when courses are included. The respective statistics for science grows from 4.7% to 

5.7% while the PLTW coefficient is reduced to nearly zero. 

 7 Conclusions 

 There are several points of interest based on these results. First, PLTW in Iowa tends to 

attract white males and students who have higher achievement in mathematics and science in 

junior high. The percentages of women who enter PLTW are approximately the same percentage 

that enters mechanical and electrical engineering programs (Walcerz, 2006). Overall, the 

selection bias was rather significant, with participants scoring between 0.72 and 0.9 standard 

deviations higher on mathematics and science scores prior to entering PLTW. We strongly 

suggest that future research on PLTW needs to reflect selection bias in their analysis of the 

program. 

 We controlled for selection bias using propensity score matching that predicted entry into 

the program based on demographics, economic status, and whether the student was a part of a 

special population. We used a differences-in-differences growth model to measure the relative 

growth of students between 8
th

 and 11
th

 grade. We found that PLTW increase both mathematics 

and science scores by 5.2 points. 

 It is not immediately clear if 5.2 points is a large, modest, or small increase. A measure of 

effect size—Cohen’s f
2
—showed the impact was approximately 0.15 for mathematics and 0.05 

for science—a moderate and small impact, respectively. Our results show a stronger impact than 

similar studies utilizing matching. Using the intercept and participation coefficients, we found 
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this roughly equates PLTW students performing in the 91
st
 percentile in mathematics while non-

participants scored in the 81
st
 percentile. PLTW participants scored in the 83

rd
 percentile 

compared to the 80
th

 percentile for similar non-participants. 

Our findings contradict Tran & Nathan (2010) who found PLTW had insufficient or 

adverse integration for science and mathematics, respectively. However, our findings support the 

conclusions of Tran & Nathan (2009) who showed positive impacts on mathematics with weaker 

impact on science. Our statistical significance was higher, which likely related to the greater 

statistical power from the larger sample. 

 We also conducted some analysis that included additional mathematics and science 

courses (e.g., algebra 2, chemistry). PLTW students were much more likely to enroll in higher 

level mathematics and science courses, which support the findings from Bottom & Uhn (2007). 

It is possible, but we cannot conclusively determine, that PLTW’s pre- and co-requisites lead 

students to enrolling in more mathematics and science courses in high school. It is also possible 

that PLTW’s program encourage students to enroll in additional coursework due to other factors, 

such as self-efficacy or student engagement. 

Notwithstanding the reason, it is clear that these additional mathematics and science 

courses play an important role in the growth of test scores. Including these courses led to a 

substantial reduction in the estimated impact of PLTW. The pseudo R
2
 suggests the additional 

courses simply supplant the variation explained by PLTW. These results strongly suggest that 

researchers need to also consider the role of other mathematics and science course, especially 

whether PLTW leads to increased enrollment in mathematics and science. 

Assessment Instrument 
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 The current policy environment has emphasized growth and measurable gains in core 

subjects within standardized testing. Nevertheless, the use of statewide standardized exams may 

be inappropriate for the evaluation of a PBL curriculum (Tran & Nathan, 2010; Brophy, Klein, 

Portsmore, & Roger, 2008; Hmelo, et al., 1997). In studies already cited, PBL students perform 

at par or below on assessments which emphasize recollection of factual knowledge, but perform 

moderately better on assessments measuring applied skill.  

  While the achievement measure used in this study, the ITBS and ITED, include items that 

range in assessment of factual knowledge to application of skills to real-life scenarios, its 

purpose and content is not necessarily aligned with that of PLTW. For example, the range of 

content covered in the science sub-test of the ITBS includes scientific inquiry, an area more 

aligned with PLTW, but the other three content areas are less related to PLTW:  life science, 

earth and space science, and physical science. It will be less likely that a change is captured in 

achievement if the test is less closely aligned with the content of a program, such as PLTW. 

Limitations 

We have conducted a statewide evaluation of PLTW’s impact on test scores. There are a 

few limitations that we would like to address in future research and evaluation. Namely, this 

study uses administrative data, which is distinct from transcript data as it only captures course 

enrollment, not completion. We may overestimate the enrollment in PLTW or other courses by 

not being able to remove students who dropped a course. Likewise, we also do not have access to 

student grades or grade point averages. 

 This study does not provide any controls for individual classrooms or teachers since the 

data was not available. There are multiple ways to view this issue and its impact. Within the 

context of a multi-level model, we essentially ignored another level where we observe students 
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within a classroom that is within a school district. The effects of PLTW within the classroom 

may be positively correlated and vary within the school district. The variance of effects within 

the classroom can be influenced by teachers and their qualifications. Earlier, we noted the 

varying proportions of teachers with advanced degrees in each school district. Also, we noted the 

challenges in which PLTW can either be taught by teachers licensed in mathematics, science, or 

industrial technology. We are uncertain if teacher qualifications or licensures have a differential 

impact on student performance. 

Future Directions  

Test scores are relevant to the literature given the current policy environment’s emphasis 

on measureable gains on standardized tests. Yet, gains on standardized tests are not the only 

goals of the program. Future iterations of this research will explore other outcomes that should 

be considered, such as college attendance, choice of majors, and college completion. The authors 

are currently using Iowa’s SLDS to follow outcomes for the treatment and control group beyond 

high school, which will enable research of PLTW’s long-term outcomes. 

Future research is also needed on PLTW’s impact on problem solving through testing 

instruments that are oriented toward evaluating problem-solving and critical thinking. Prior 

research on PBL has shown little success of students on fact-based exams, but it is possible 

PLTW improves critical thinking and problem solving abilities. 

The results of this study also suggest a strong relationship between PLTW and enrollment 

in other mathematics and science courses. These other mathematics and science courses play an 

even larger role in mathematics and science achievement scores than PLTW. Future research is 

needed to explore this relationship and whether PLTW increases enrollment in these areas 
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through the co- and pre-requisites, increased self-efficacy, increased student engagement, or 

other mechanisms.   
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Note: The transition shown in [1] is tracked by Iowa’s secondary data system (Project EASIER); the 

transition into community colleges [2] is from Iowa’s community college data system (MIS), we obtain 

the transition into public universities, [3] through partnership with the State Board of Regents; and the 

transition into other higher education institutions [4] is from the National Student Clearinghouse. 
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Figure 1: Iowa Statewide Longitudinal Dataset: Tracking Project Lead The Way Students 
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Table 1: Descriptive statistics of Project Lead The Way data set: 2009 & 2010 Cohorts 

  
Nonparticipants 

 

PLTW 

Participants 

  
(N = 24,709) 

 
(N = 1,321) 

  
Mean 

Standard 

Deviation 
 

Mean 
Standard 

Deviation 

Demographics 
     

 
Male 0.49 0.50 

 
0.85 0.36 

 
American Indian 0.01 0.09 

 
0.00 0.06 

 
Asian 0.03 0.16 

 
0.03 0.17 

 
Black 0.09 0.29 

 
0.03 0.16 

 
Hispanic 0.07 0.26 

 
0.03 0.17 

 
White 0.80 0.40 

 
0.91 0.29 

Economic Status Proxy 
     

 
Free Lunch 0.24 0.43 

 
0.11 0.31 

 
Reduced Lunch 0.07 0.25 

 
0.05 0.21 

 
Homeless 0.01 0.09 

 
0.01 0.08 

Special Populations 
     

 
Section 504 0.01 0.10 

 
0.01 0.09 

 
Gifted & Talented 0.10 0.29 

 
0.21 0.41 

 
IEP 0.15 0.36 

 
0.02 0.13 

Testing - 11th Grade ITED 
     

 
Reading - Standard Score 285.75 43.84 

 
307.29 35.44 

 
Reading - Percentile Rank 59.38 26.77 

 
73.19 20.63 

 
Mathematics - Standard Score 286.43 41.55 

 
319.42 28.89 

 
Mathematics - Percentile Rank 60.89 28.63 

 
83.27 18.27 

 
Science - National Standard Score 294.70 44.21 

 
323.90 34.95 

 
Science - Percentile Rank 64.55 27.04 

 
81.74 18.82 

Testing - 8th Grade ITBS 
     

 
Reading - Standard Score 254.56 41.13 

 
274.68 29.33 

 
Reading - Percentile Rank 57.63 27.57 

 
72.23 20.42 

 
Mathematics - Standard Score 257.45 37.47 

 
282.95 25.41 

 
Mathematics - Percentile Rank 59.57 27.70 

 
79.52 18.18 

 
Science - National Standard Score 263.88 36.22 

 
285.17 27.92 

  Science - Percentile Rank 62.19 24.95   77.21 17.22 
Note: Data represents pooled 2009 and 2010 cohorts. Testing data reflects national 

standard score and percentile ranks. Control group includes students from districts 

with PLTW, but who did not enroll in any of those courses. 
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Figure 2: Hypothetical Trade-off between Matching Algorithms 

 

 
Note: The diagram is for illustrative purposes. The scale 

and precise location may differ by data set. 
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Table 2: Propensity Score Coefficients 

  

 
Coefficient z-statistic 

Intercept -1654.0 -19.57 

ITBS, 8th Grade 
  Reading 0.0 -1.86 

Mathematics 0.0 8.69 

Science 0.0 4.90 

Demographics 
  Black -0.6 -1.45 

Asian 0.0 -0.11 

Hispanic -0.3 -0.71 

Male 1.8 21.72 

Economic Status Proxy 
 Free Lunch -0.2 -2.47 

Reduced Lunch 0.0 -0.14 

Homeless -0.4 -0.69 

Special Populations 
 IEP -1.0 -5.77 

Section 504 -0.5 -1.42 

Gifted & Talented 0.3 4.28 
Note: Estimates are for enrollment into PLTW courses in either 9th or 10th grade. 

Data includes controls for students in either the 2009 or 2010 cohorts. 
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Table 3: Standardized differences between PLTW and non-PLTW students in 8
th

 grade by 

matching algorithm 

  

Matching Methodology 

 
Prior to 

Matching 
Nearest Neighbor with 

Exact Matching on Districts 
Genetic Algorithm  

One-to-One 
Genetic Algorithm 

One-to-Two 

Propensity Score Distance 0.953 0.036 -0.001 0.002 

Cohort -0.067 -0.075 0 0.001 

ITBS, 8th Grade     

Reading 0.597 0.106 -0.002 -0.005 

Mathematics 0.891 0.103 0.001 0.004 

Science 0.719 0.148 0.002 0.007 

Demographics     

White 0.353 -0.044 0 0 

African American -0.386 0.034 0 0 

Asian/Pacific Islander 0.027 -0.024 0 0 

Hispanic -0.224 0.05 0 0 

American Indian -0.097 0.052 0 0 

Male 0.972 -0.051 0 0.002 

Economic Status Proxy     

Free Lunch -0.405 -0.035 0 0 

Reduced Lunch -0.064 0.011 0 0.003 

Homeless -0.068 0.026 0 0 

Special Populations     

IEP -0.563 -0.014 0 0.004 

Section 504 Plan -0.086 0.052 0 0 

Gifted & Talented 0.271 0.038 0.003 0 

School District -0.049 0 NA NA 

Sample Size (ni) 15,660 1,500 1,477 2,111 

Treated Observations (niτ) 751 750 751 751 

Control Observations (niτ') 14,909 750 726 1,360 
Note: Figures above show (μτ- μτ’)/σpooled. Positive sign denotes participants were above the population averages. 
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Table 4: Descriptive statistics of matched data set: Genetic matching one-to-two 

Variable Weighted Mean Weighted Standard Deviation 

PLTW Participant 0.38 0.49 

Demographics 
  White 0.90 0.30 

Black 0.03 0.17 

Asian 0.04 0.18 

Hispanic 0.03 0.17 

American Indian 0.00 0.06 

Male 0.85 0.36 

Economic Status Proxy 
  Free Lunch 0.11 0.31 

Reduced Lunch 0.04 0.21 

Homeless Status 0.00 0.06 

Special Populations 
  IEP 0.02 0.14 

Section 504 0.01 0.09 

Gifted Talented 0.23 0.42 

11th Grade scores 
  Reading 306.28 37.31 

Mathematics 315.06 31.14 

Science 320.28 36.43 

8th Grade Scores 
  Reading 277.48 30.72 

Mathematics 283.72 26.66 

Science 288.92 29.88 
Note: Descriptive data for the treatment and control group after matching using 

propensity score matching using genetic algorithms with one treatment 

matched up to two nontreatment cases. The weighted means and standard 

deviations are based on the weights assigned from the matching algorithm. 
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Table 5: Iowa Project Lead The Way's impact (fixed effects) on mathematics scores, 8th to 11th 

grade 

 Genetic One-to-Two  Genetic One-to-One  Nearest Neighbor 

 Estimate t-statistic  Estimate t-statistic  Estimate t-statistic 

Intercept (α) 272.5 150.87  272.74 139.6  125.4 9.3 

PLTW Participant (τ) 2.8 1.51  1.97 1.1  -14.1 -1.2 

ITED (Junior-year test) (T) 30.8 21.40  31.24 20.5  10.6 12.4 

PLTW Participant x ITED (∆) 5.2 2.40   3.95 1.7   1.1 1.4 

Additional Testing Controls:         

Midyear 4.0 2.21  3.41 1.8  0.9 0.3 

Spring 5.8 2.28  8.59 3.1  1.6 0.4 

Demographics:         

African-American -14.1 -5.58  -14.67 -4.9  -16.9 -4.2 

Asian/Pacific Islander 0.0 -0.01  4.10 1.4  2.6 0.9 

Hispanic -14.9 -5.94  -14.28 -4.8  -12.9 -3.7 

American Indian 15.1 1.94  13.18 1.1  5.8 0.9 

Male 3.4 3.18  3.26 2.6  4.1 2.6 

Economic Status Proxy         

Free Lunch Eligible -8.0 -6.01  -8.68 -5.5  -2.0 -1.1 

Reduced Lunch Eligible -4.1 -2.38  -6.50 -3.2  -5.4 -2.4 

Homeless 3.4 0.40  9.22 0.9  -3.3 -0.4 

Special Populations         

IEP -31.6 -13.73  -28.26 -10.0  -29.9 -8.5 

Section 504 Plan -6.6 -1.28  -0.38 -0.1  3.6 0.5 

Gifted and Talented 26.2 26.08  26.17 22.0  26.7 21.5 

         

Number of Observations 4075  2854  2867 

School Districts 76  71  45 

         

AIC 37739  26530  26581 

BIC 37941  26721  26772 

LogLikelihood -18837  -13233  -13259 

McFadden's R-squared 6.1%  5.7%  6.1% 
Note: Estimates are for the national standardized test score, mathematics, between 8th grade Iowa Test of Basic 

Skills (ITBS) and 11th grade Iowa Test of Educational Development (ITED). Estimates are shown as national 

scale scores. Estimates are for the class of 2009 and 2010 cohorts. 
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Table 6: Iowa Project Lead The Way's impact (fixed effects) on science scores, 8th to 11th grade 

  

 Genetic One-to-Two  Genetic One-to-One  Nearest Neighbor 

 Estimate t-statistic  Estimate t-statistic  Estimate t-statistic 

Intercept (α) 279.8 139.19  122.80 11.1  279.2 103.5 

PLTW Participant (τ) -0.8 -0.36  -22.05 -1.5  -0.4 -0.2 

ITED (Junior-year test) (T) 32.1 20.67  11.01 15.1  32.7 17.4 

PLTW Participant x ITED (∆) 5.2 2.02   1.60 1.6   4.5 1.5 

Additional Testing Controls:         

Midyear 2.3 1.16  -17.93 -4.7  -12.1 -3.1 

Spring 3.5 1.24  2.54 0.7  3.0 0.9 

Demographics:         

African-American -13.4 -4.61  3.60 1.5  2.1 0.8 

Asian/Pacific Islander -0.4 -0.14  5.40 1.7  2.2 0.6 

Hispanic -17.1 -5.93  -11.90 -2.9  -10.7 -2.8 

American Indian -10.8 -0.83  -17.98 -1.6  -18.1 -1.1 

Male 0.2 0.15  0.66 0.4  -1.3 -0.8 

Economic Status Proxy         

Free Lunch Eligible -11.7 -7.59  -7.73 -3.7  -10.1 -5.4 

Reduced Lunch Eligible -7.6 -3.74  -8.68 -3.2  -9.2 -3.7 

Homeless -15.6 -1.64  -2.62 -0.2  -8.4 -0.7 

Special Populations         

IEP -31.7 -12.00  -27.16 -6.8  -32.7 -10.4 

Section 504 Plan -8.6 -1.51  -5.95 -0.8  -3.5 -0.5 

Gifted and Talented 30.2 25.56  28.66 18.7  30.1 21.2 

         

Number of Observations 4071  2851  2862 

School Districts 76  71  45 

         

AIC 29283  27432  27568 

BIC 39485  27623  27759 

LogLikelihood -19610  -13684  -13752 

McFadden's R-squared 4.7%  4.8%  4.8% 
Note: Estimates are for the national standardized test score, mathematics, between 8th grade Iowa Test of 

Basic Skills (ITBS) and 11th grade Iowa Test of Educational Development (ITED). Estimates are shown as 

national scale scores. Estimates are for the class of 2009 and 2010 cohorts. 
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Figure 3: Summary of estimated impact (fixed effects) of Project Lead The Way on mathematics 

and science scores with binary, continuous/binary, and continuous measures 

 
Note: Estimated impacts shown for separate regressions using binary controls (PLTW participant or 

nonparticipants), a continuous/binary control (number of PLTW Carnegie units, each as a binary 

variable), and continuous control (number of PLTW Carnegie units). Above estimates are derived from a 

one-to-two match using genetic algorithms. Estimates are shown as national scale scores. Covariates 

include additional testing controls, demographics, economic status proxy, special populations, and 

clustering by school district. Error bars represent the 95% confidence interval. 

  

-80 

-60 

-40 

-20 

0 

20 

40 

60 

80 

Binary B/C  

1 course 

B/C 

2 courses 

B/C 

3 courses 

≥2 units Continuous 

Math 

Science 



47 

 

Table 6: Average number of Carnegie units in mathematics and science in 

9
th

 and 10
th

 grade by treatment and control group 

 

Course 
Treatment 

Group 
Control 

Group 
Difference 

in Means t-statistic 

Biology 0.87  0.61  0.26 56.80 

 
(0.43) (0.56) 

Chemistry 0.33  0.12  0.21 57.58 

 
(0.47) (0.32) 

Physics 0.12  0.01  0.11 49.02 

 
(0.33) (0.11) 

Algebra 1 0.58  0.39  0.18 34.93 

 
(0.58) (0.57) 

Geometry 0.80  0.33  0.46 110.84 

 
(0.42) (0.49) 

Algebra 2 0.38  0.14  0.24 60.90 

 
(0.49) (0.35) 

Algebra 3 or Trigonometry 0.09  0.01  0.08 40.85 

 
(0.29) (0.11) 

Precalculus 0.03  0.01  0.02 13.73 

 
(0.18) (0.12) 

Calculus 0.01  0.00  0.01 6.72 

 
(0.12) (0.04) 

Probability & Statistics 0.01  0.00  0.00 4.73 

 
(0.07) (0.05) 

International Baccalaureate 

Mathematics 0.00  0.00  
0.00 -3.51 

 
0.00  (0.02) 

Business/Technical Mathematics 0.00  0.06  -0.06 -30.28 

 
(0.04) (0.29) 

Other Mathematics 0.05  0.01  0.05 24.99 

 
(0.27) (0.09) 

Note: Data shown for matched data set using genetic algorithms using a maximum of two 

control cases matched to each treatment case. 
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Table 8: Estimated impact (fixed effects) of Project Lead The Way on mathematics and science 

scores 

with course covariates 
 

 Mathematics  Science 

 Estimate t-statistic  Estimate t-statistic 

      

PLTW Participant x ITED (∆) 0.5 0.2  0.8 0.3 

Cumulative courses (Carnegie units)     

Biology 0.1 0.1  2.3 1.4 

Chemistry 8.5 6.0  10.1 6.0 

Physics 5.6 2.3  5.8 2.0 

Algebra 1 -6.5 -5.4  -4.2 -3.0 

Algebra 2 12.2 8.3  15.6 8.9 

Algebra 3 or Trigonometry 10.2 3.7  9.2 2.8 

Precalculus 12.6 3.9  9.6 2.5 

Calculus -1.6 -0.3  -4.3 -0.6 

Probability & Statistics 5.8 0.9  6.1 0.8 
International Baccalaureate 

Mathematics -12.2 -1.2  -15.6 -1.3 

Business/Technical Mathematics -19.2 -6.7  -19.7 -5.8 

Other Mathematics -6.4 -1.7  -3.1 -0.7 

      

McFadden's R-squared 6.6%  5.7% 
Note: Above estimates are fixed effects derived from a one-to-two match using 

genetic algorithms. Estimates are shown as national scale scores. Covariates include 

additional testing controls, demographics, economic status proxy, special populations, 

and clustering by school district. Omitted course variables are physical science and 

geometry. 
 

 

 

 

 


